

Supplement to manual

for TI 58, TI 58C, TI 59

Contents

Preface 2
Synthetic Programming 2
Flags 2
Dsz 2
Dsz nn BST 2
"Soft" and "hard" display 2
HIR 2
- Use of HIR as an extra-register 3
- Use of HIR as print register 3
- HIR usage from the keyboard 4
Correspondence Program Step-Data
 Register 4
Fast Mode 5
Pgm nn R/S 7
Delayed module call 7
The firmware of TI-58/59 7
Graphic mode 8
Practical box 8
Standard for typing key symbols 8

Appendix to Programbiten 82-1
Price for non-members 15 kr

PREFACE
This supplement to the TI-58/58C/59 in-
struction manual has been added to ensure
that new members don't need to be famili-
ar with articles in the "Programbiten" as
a preliminary consideration of the con-
tents of previous issues.

However, when we have written it, we have
designed it so that can be used as an
"encyclopedia" with reference to various
more detailed articles in "Programbiten".

The use of this complement to the in-
struction manual, of course, assumes that
the reader is familiar with the contents
of the ordinary instruction manual.

Stockholm January 1982

Lars Hedlund
Björn Gustavsson

SYNTHETIC PROGRAMMING
As it is known, an instruction in the
program memory is stored as a two-digit
code. Tables of these codes can be found
in the instruction manual on page V-49
and V-50. It is obvious that the func-
tions 2nd, LRN, SST, Ins, BST and Del are
missing codes. If they had one, these
would have been 21 or 26, 31, 41, 46, 51
and 56.
Furthermore, code 82 is missing. These
codes, which can’t be entered into the
program memory with a single keystroke,
however (and not even as several "merged"
keys) can be programmed "synthetically"
using a multistep instruction, like STO,
and a delete (Del) because the subsequent
two digit number is stored in one program
step. For example, "21" can be programmed
"STO 21 BST BST Del SST". (when listing
with printer, the instruction 21 is
printed as "2ND.") - Code 31 (LRN) in a
program causes the program to stop with
the display in programming mode.
Referring to the code 82, see the follow-
ing section on HIR.

FLAGS
The TI 58/59 has ten flags with numbers
0-9 but not more. Through experiments
with synthetic programming, one can think
of "discover" more flags but at closer
control it turns out to be the same as
the ten original ones.

DSZ
In the instruction manual p. V-63, the
Dsz function only operates on the regis-
ters 00-09. This is not true, but all
registers except 40 can be used. ("Dsz
40" is designated as "Dsz Ind"). However,
as the register number and the following
jump address, they must be programmed
synthetically as above, or, in a favora-
ble case, in a somewhat simpler manner.
Example: "Dsz 29 320" is encoded "Dsz CP
(= 29) 3 2nd CLR (= 20). "Dsz 41 021" for
example is programmed as "STO 41 STO 21"
BST BST BST (go to first STO) Dsz (supe-
rimpose the first STO) SST (go to the
second STO) 0 (superimpose the second
STO) SST (go to the next free step).

DSZ NN BST
A counterpart to "Op 30" - "Op 39"
(decrement of register 0-9 contents by
one) can be obtained with "Dsz nn BST",
where both the register number nn and BST
(code 51) are programmed synthetically.
Note, however, that Dsz decreases abso-
lute value of the register content down
to zero, not past zero!

"SOFT" AND "HARD" DISPLAY
A "soft" display can be deleted with CE
(i.e. by entering numbers) and becomes
"hardened" by pressing an operation key
(cannot be deleted with CE).

HIR
AOS (Algebraic Operations System) means
that expressions can be entered as they
are written. In order to accommodate
this, the calculator must store certain
numbers. For example, if 2 + 3 x 4 is en-
tered, 2 and 3 must be saved somewhere
for the calculation to be completed. In
order to store these operands, 8 special
registers are used, called HIR-registers
(Hierarchical Internal Registers). These
registers are designated H1 to H8 (HIR1
to HIR8).

In the example above, 2 are stored in H1
and 3 in H2. It is actually possible to
get these registers directly from program
or keyboard and use them as an extra-
register.

The HIR yn instruction is used to manage
an HIR register, where n is the number of
the HIR register and y denotes the opera-
tion to be performed according to follow-
ing table:

2 PROGRAMBITEN

y operation
--
0 store in Hn (STO)
1 recall Hn (RCL)
(2) unknown
3 sum to Hn (SUM)
4 multiply to Hn (Prd)
5 subtract in Hn (INV SUM)
6 (7,8,9) divide in Hn (INV Prd)

The instruction HIR has code 82. Unfortu-
nately, there is no key with that code,
so the code must be programmed syntheti-
cally.

Example: 18 HIR 04 stores 18 in H4, 3 HIR
64 divide H4 with 3, 7 HIR 34 sums 7 to
H4. HIR 14 recalls H4 and gives in this
case 13.

(The following doesn’t apply to the TI-
58C.)
An important limitation on HIR use: if
exponent-of-ten or technical notation is
set, the absolute value of X-register's
exponent-of-10 is taken when using HIR 3n
to HIR 9n.

This means that x will be multiplied by a
power of 10 if the absolute value of x is
less than 1.
Example: 0.035 HIR 35 results in 0.035 =
3.5*10-2 changes to 3.5*102=350, which is
then summed up to H5. If the exponent-of-
ten notation is set this will not happen.

Use of HIR as an extra-register
The calculator uses HIR register inter-
nally when calculating certain functions,
as well as a print register. It is impor-
tant to check that an HIR register is not
used for two things at the same time. How
the TI-58/58C/59 use HIR registers:

Operation Uses HIR register

Op 01 H5
Op 02 H6
Op 03 H7
Op 04 H8
Op 11 First 2 available HIR
Op 12 H8 and the first 3 available

HIR
Op 13 First available HIR
Op 14 H8 and the first 3 available

HIR
Op 15 H8 and the first 3 available

HIR

P/R First available HIR and H7 and
H8.

INV P/R First 2 available HIR and H7
and H8 (H7 is not used on TI-
58C)

Σ+ H7 and H8
INV Σ+ H7 and H8
D.MS First 2 Accessible HIR and H8
INV D.MS First 2 available HIR and H8
Xm First available HIR
INV Xm First 2 available HIR and H8

Also note that HIR registers is used by
AOS to store pending operations. This
makes H1 and H2 unavailable as extra-
registers.

Neither CLR, CMs nor any other instruc-
tion zeroes any HIR register. A single
HIR register can be set to zero with 0
HIR 0n. If the printer is connected, all
can be cleared with the sequence CLR D.MS
HIR 03 HIR 04 Op 00 (without printer it
clears H1 to H4 only; Op 00 can then be
excluded).

Use of HIR for printer detection

This can be used for software testing if
the printer is connected. "1 P/R Op 00
HIR 18" gives 0 if the printer is con-
nected, otherwise 1. Explanation: P/R
uses HIR 8, see below. If you continue
with "CP INV EQ B STF 7 Lbl B" you have
set flag 7 if the printer is connected
and with "... IFF 7 E' R/S Lbl E' print-
ing" the program stops at R/S if no prin-
ter is connected. (The TI-58C has the "Op
40" instruction to do this.)

Use of HIR as a print register
The print registers can be loaded direct-
ly using the HIR instruction. As shown in
the table how the HIR registers are used,
H5 corresponds to print register 1, H6 to
print register 2 etc.

Op 01 can be replaced with HIR 05. But
now it appears that the print codes can-
not be written normally. The contents of
a print register are stored in the form
x.xxxxxxxxxxxx*10^n when the digit for
the decimal sign is separated from zero.
The 3 first digits are always ignored
when printing. The printing codes are al-
ways the last 10 digits.

PROGRAMBITEN 3

For example, if we execute 131415 HIR 05
to type "ABC", this is stored as
1.314150000000*10^5 and because the 3
first digits are ignored, the print code
will be 41 50 00 00 00 which gives the
printout "Ux ". In order to get the
correct print, we had to add 3 signifi-
cant digits to the print code.
If we try 100131415 HIR 05, the writing
code will be 13 14 15 00 00 and the print
will be "ABC ". The decimal point's lo-
cation has no meaning; for example,
10.0131415 had been just as good.

When using Op 01-04, the numbers in the
print registers are stored in a non-
normalized form: 0.00XXXXXXXXXXX *100,
i.e. the digit for the decimal character
is zero. When printing, the 3 first ze-
roes are ignored. (Note: There is no pos-
sibility to save a similar storage with
the HIR instruction, but 3 significant
digits must enter the print codes).

Example: If you press 131415 Op 01, the
print code is stored in H5 in the follow-
ing way: 0.000000131415*100, the first
zeroes are ignored when printed and give
" ABC".

What are the reasons for using the HIR
instruction instead of Op 01-04 to store
print codes?
First, Op-loading considers both fixed
decimal and exponent-of-ten notation.
HIR-loading has no such disadvantages.
Second, parts of a write register can be
changed if HIR-loading is used.
Example: Assume that X1, X2, X3 ...
should be printed in the upper edge. The
print codes can be loaded with the se-
quence 4402 + 1 EE 12 = HIR 08 (possibly
CLR for deleting exponent-of-ten nota-
tion). This give printing X1. To get X2
execute 1 HIR 38; similarly done to get
X3 etc. (The first sequence can be short-
er if the print code is stored in a reg-
ister. The sequence will be RCL nn HIR
08.)

Use of HIR from the keyboard
Sometimes it may be good to be able to
perform the HIR instruction from the key-
board. The easiest way to place a series
of code 82 in the program memory when
there are steps over. If the step counter
is then set to a program step, then there
is a code, just pressing SST, to execute
the HIR instruction. This is then fol-
lowed by two digits from the keyboard, to
enter the operation code.

Example: To execute HIR 11, press SST 11.

Articles on HIR in Programbiten:

PB 78-1 p 18: Stig Petersson, HIR
PB 79-2 p 12: Lars Hedlund, HIR - The print reg-
isters
PB 80-2 p 13: Lars Hedlund, HIR - Good but dan-
gerous
PB 80-3 p 13: Lars Hedlund, More about HIR -
among other things from the keyboard
PB 80-4 p 30-33, 37: Gösta Blume, HIR - Better
everyday life
PB 80-4 p 40: Lars Hedlund, For HIR-winner
PB 81-1 p 5: Björn Gustavsson, Input of HIR.

CORRESPONDENCE PROGRAM STEP-DATA REGISTER
On TI-58/58C/59, the same memory is used
for programs and data (non-simultaneous
memory). It is therefore possible to
store data in a register and change the
partition, after that the register be-
comes program code.

For example, try the following: Enter
9208.821176, press STO 59 (STO 29 on TI-
58/58C). Then set partition with 5 Op 17
(2 Op 17). At step 483 (243), the follow-
ing program is stored: Lbl A HIR 08 RTN.

R59 corresponds to steps 480-487 on TI-59
and steps 000-007 on TI-58/58C. The
tables below show the correspondence be-
tween program step and data register.

TI-59 352-359 R75 720-727 R29 112-119 R45
 360-367 R74 728-735 R28 120-127 R44
000-007 R119 368-375 R73 736-743 R27 128-135 R43
008-015 R118 376-383 R72 744-751 R26 136-143 R42
016-023 R117 384-391 R71 752-759 R25 144-151 R41
024-031 R116 392-399 R70 760-767 R24 152-159 R40
032-039 R115 400-407 R69 768-775 R23 160-167 R39
040-047 R114 408-415 R68 776-783 R22 168-175 R38
048-055 R113 416-423 R67 784-771 R21 176-183 R37
056-063 R112 424-431 R66 792-799 R20 184-191 R36
064-071 R111 432-439 R65 800-807 R19 192-199 R35
072-079 R110 440-447 R64 808-815 R18 200-207 R34
080-087 R109 448-454 R63 816-823 R17 208-215 R33
088-095 R108 456-463 R62 824-831 R16 224-231 R32
096-103 R107 464-471 R61 832-839 R15 216-223 R31
104-111 R104 472-479 R60 840-847 R14 232-239 R30
112-119 R105 480-497 R59 848-855 R13 240-247 R29
120-127 R104 488-495 R58 856-863 R12 248-255 R28
128-135 R103 496-503 R57 864-871 R11 256-263 R27
136-144 R102 504-511 R56 872-879 R10 264-271 R26
145-151 R101 512-519 R55 880-887 R09 272-279 R25
152-159 R100 520-527 R54 888-895 R08 280-287 R24
160-167 R99 528-535 R53 896-903 R07 288-295 R23
168-175 R98 536-543 R52 904-911 R06 296-303 R22
176-183 R97 544-551 R51 912-919 R05 304-311 R21
184-191 R96 552-559 R50 920-927 R04 312-319 R20
192-199 R95 560-567 R49 928-935 R03 320-327 R19
200-207 R94 568:575 R48 936-943 R02 328-335 R18
208-215 R93 576-583 R47 944-951 R01 336-343 R17
216-223 R92 584-591 R46 952-959 R00 344-351 R16
224-231 R91 592-599 R45 352-359 R15
232-239 R90 600-607 R44 TI-58 360-367 R14
240-217 R89 608-615 R43 000-007 R59 368-375 R13
248-255 R88 616-623 R42 008-015 R58 376-383 R12
256-263 R87 624-631 R41 016-023 R57 384-392 R11
264-271 R86 632-639 R40 024-031 R56 393-399 R10
272-279 R85 640-647 R39 032-039 R55 400-407 R09
280-287 R84 648-655 R38 040-047 R54 408-415 R08
288-295 R83 656-667 R37 048-055 R53 416-423 R07
296-303 R82 664-671 R36 056-063 R52 424-431 R06
304-311 R81 672-619 R35 064-071 R51 432-439 R05
312-319 R80 680-687 R34 072-079 R50 440-447 R04
320-327 R79 688-695 R33 080-087 R49 448-455 R03
328-335 R78 696-703 R32 088-095 R48 456-463 R02
336-343 R77 704-711 R31 096-103 R47 464-471 R01
344-351 R76 712-719 R30 104-111 R46 472-479 R00

4 PROGRAMBITEN

In order to understand how this corres-
pondence can be utilized practically, we
must look at how the calculator stores
numbers internally.

All numbers are stored in exponent-of-ten
notation, irrespective of how they appear
in the display, i.e. as m*10n, where m
is a 13 digit number (1≤m<10) and n the
exponent. By storing 2 digits in each
program step, the number enters 8 program
steps: 6 1/2 program steps are used for
m, 2 times 1/2 program step is used for
the exponent and 1/2 program steps are
used for the signs of m and n. These
signs are stored according to:

Number Meaning
--
0 m*10^n
2 -m*10^n
4 m*10^-n
6 -m*10^-n
8 Overflow (i.e. 9.9999999 99
 flashes upon recall)

Example: The number -2471.7176 (equal to
-2.4717176*103) is stored in R0 of TI-59
in the following manner:

959 24
958 71
957 71
956 76
955 00
954 00
953 00
952 32

all of these are stored in steps 952-959.
(There is a virtual decimal point between
the tens and ones digit in step 959.) The
exponent (= 03) is stored in the ones di-
git of step 953 and in the tens digit of
step 952. The signs are stored as second
digit of step 952.

This contents simultaneously create a
program (from step 956): Lbl SBR SBR CE.

It is therefore possible to allow a pro-
gram to create new programs, which can
then be used as subroutines.

Here we shall only look at one of the
possibilities with this technique. The
program below arranges an indirect jump

to a label whose code is in the display
at the moment of the call.

TI-58/58C TI-59

000 76 LBL 000 76 LBL
001 11 A 001 11 A
002 32 X:T 002 32 X:T
003 03 3 003 06 6
004 69 OP 004 69 OP
005 17 17 005 17 17
006 32 X:T 006 32 X:T
007 85 + 007 85 +
008 93 . 008 93 .
009 06 6 009 06 6
010 01 1 010 01 1
011 95 = 011 95 =
012 42 STO 012 42 STO
013 29 29 013 59 59
014 02 2 014 05 5
015 69 OP 015 69 OP
016 17 17 016 17 17
017 61 GTO 017 61 GTO
018 02 02 018 04 04
019 46 46 019 86 86

When it’s executed a GTO N (where N is
the code of the input label) is stored in
step 486 (246 on TI-58/58C).

Articles about correspondence program steps-data

Register in Programbiten:

PB 79-1 p 20-21: Claes Schibler, Program step -
program memory
PB 79-3/4 p 26-27: Sven Ostberg, Something about
TI-59's computer-like features
PB 80-2 p 6-7: Sven Ostberg, Something about TI-
59's computer-like features, part 2
PB 81-4 p 11: Björn Gustavsson, Program Loader

FAST MODE
Fast mode is a state where program runs
at double speed. It was discovered in the
spring of 1980 by West German Martin
Neef. Now the method is used for all pro-
grams that need to be executed quickly.

Fast mode is achieved by placing the se-
quence Pgm 02 SBR 239 9 0 in the program
memory at step 005 and executed (the ML
module must be inserted). This results in
the entire memory being erased. It is
possible to enter a program directly from
the keyboard or insert a magnetic card.

A program to be written in fast mode may
look like that on the next page. Steps
000-015 as the initialization routine
look similar to most fast mode programs.
After that our own program will run, as
in the case of the routine for the fac-
torial.

PROGRAMBITEN 5

000 00 0 012 22 INV 024 00 00
001 00 0 013 58 FIX 025 00 00
002 00 0 014 22 INV 026 20 20
003 76 LBL 015 57 ENG 027 01 1
004 11 A 016 25 CLR 028 95 =
005 36 PGM 017 91 R/S 029 99 PRT
006 02 02 018 42 STO 030 91 R/S
007 71 SBR 019 00 00 031 61 GTO
008 02 02 020 43 RCL 032 00 00
009 39 39 021 00 00 033 18 18
010 09 9 022 65 x
011 00 0 023 97 DSZ

We are coming back to the program, but
first of all, a reminder of the rules
that are associated with fast mode.
1. When you switch to fast mode, the en-

tire program memory and data records
are deleted (not the HIR registers).

2. The partition is always set to 479.59
(6 Op 17) on TI-59 (to 239.29 (3 Op
17) on TI-58) when moving to fast
mode. It is not possible to enter
fast mode on the TI-58C (see note at
the end in the description).

3. When switched to fast mode, it will
be stopped with decimal fixed to Fix
0.

4. Programs can be entered or changed
directly from the keyboard. SST, BST,
Ins and Del can be used unobtrusive-
ly. Merged codes cannot be entered
because the calculator is in fast
mode (for example, 72=ST*, 92=RTN).

5. Data can be input as usual with keys
0-9, +/-, decimal point, CE, CLR, EE.

6. Using all keys that leave behind a
hard display will start running the
program in the program memory. This
may cause the caller to be taken out
of fast- mode, for example, if there
is no program. An exception to this
rule of Prt, which can be used unob-
trusively.

7. RST used by the keyboard when pro-
grammed does not remove fast mode.
RST used in a program removes fast
mode and may cause a "crash", after
which it is only possible to turn off
the calculator.

8. R/S can be used to start a program in
fast mode. SBR nnn is used from the
keyboard to start a program at step
nnn.

9. The only way to stop a program run-
ning in fast mode is to turn off the
calculator.

10. An R/S in a program will not work un-
less the display is soft or R/S is
not immediately after a Prt or Pause
(Prt goes well without printer.)

11. RTN never used.
12. No subroutine calls can be used, like

functions such as D.MS, P/R or sta-
tistical functions (that use the
firmware) or library programs.

13. No labels can be used. All jump ad-
dresses must be absolute.

Let us now look at the program above. It
is fed in on a regular basis. It should
then be recorded on a magnetic card for
proofing, because the program is erased
by moving to fast mode.
The program is executed by pressing A.
The program memory is erased while the
ringer is switched to fast mode. Now the
magnetic card can be reinserted. Imme-
diately after the reading, program execu-
tion starts. The following sequence is
executed: 9 0 INV Fix INV Eng CLR R/S,
and stays with a zero in the display. Now
an integer can be input and R/S is
pressed. The factorial for this number is
calculated.
The following are important to note when
doing fast mode programs:
Program steps 005-011 should look like in
this program. The steps 000-004 may con-
tain anything, though we recommend that
step 003-004 contains Lbl A, so that in-
itialization to fast mode can only be
done by pressing A.
Steps 012-015 may change, but note that
they will be performed twice. R/S on ei-
ther of these steps is completely inap-
propriate. In addition, Fix 0 will auto-
matically resume when you go to fast mode
- if Fix 0 is not required, then either
INV Fix should remain.
If a program requires with a different
partition other than the normal, the pro-
gram must set the correct partition.
If a program does not fit on one side,
the part of the program contained in
block 1 must read the remaining cards.
This is conveniently done as in this pro-
gram:
000 00 0 008 02 02 016 02 2
001 00 0 009 39 39 017 91 R/S
002 00 0 010 09 9 018 03 3
003 76 LBL 011 00 0 019 91 R/S
004 11 A 012 22 INV 020 04 4
005 36 PGM 013 58 FIX 021 91 R/S
006 02 02 014 22 INV
007 71 SBR 015 57 ENG
The actual program should start at step
022. Procedure for review is as follows:
Read block 1. Press A. Re-enter block 1
again, 2 is displayed - enter block 2, 3
is displayed - enter block 3, 4 is dis-
played - load block 4.
If you have less than 4 blocks, simply
remove unnecessary instructions.

Lastly, be aware of the above limitations
- because subroutines cannot be used.

Recently (autumn 1981) two new methods
for getting into fast mode have been dis-
covered. These can be used on the TI-
58/58C also, and the program will not be
erased when switching to fast mode.

PROGRAMBITEN 6

Articles on fast mode in Programbiten:

PB 80-3 p 14: Lars Hedlund, Deep diving into the
TI-59
PB 80-4 p 38: Björn Gustavsson, Factorial
program in fast mode
PS 81-1 p 11: Björn Gustavsson. More about fast
mode
PB 81-3 p 29-32: Björn Gustavsson, More about
fast mode -2

PGM nn R/S
Contrary to what is stated in the manual
(p IV-52, V-61), the call Pgm nn R/S can
be used, which is actually mentioned in
the table on page V-62 in the manual! The
call starts the module program on the
step that the module's program counter is
pointing to.

Example: Suppose a module program looks
like this and has program number 06:

000 76 LBL 007 20 20
001 15 E 008 72 ST*
002 00 0 009 00 00
003 42 STO 010 92 RTN
004 00 00 011 61 GTO
005 92 RTN 012 00 00
006 69 OP 013 06 06

If the call is first done with Pgm 06 E,
the module program counter will point to
step 006. After typing Pgm 06 R/S, steps
006-010 are executed and the module pro-
gram counter then points to step 011. Pgm
06 R/S can now be repeated as many times
as you wish.

In general, if R/S can be used from the
keyboard when using a particular module
program, then Pgm nn R/S can be used in
programs.

DELAYED MODULE CALL
It is possible to distinguish Pgm nn from
R/S. Pgm nn can be executed in a program,
and when the user presses R/S from the
keyboard, the program continues in the
module!
This can be used when you want to tune in
a running program without stopping it.

The methods is as follows: ensure that
the module's instruction pointer points
to a convenient program section by making
a normal subroutine call to the module
program. Then execute Pgm nn BST. When
the user presses R/S, the program section
will be called.

Example: The following program increases
R1 by 1 and when the user presses R/S the
result (content of R1) is shown.

000 92 RTN 009 01 01 018 61 GTO
001 76 LBL 010 71 SBR 019 00 00
002 15 E 011 00 00 020 16 16
003 25 CLR 012 98 98 021 76 LBL
004 42 STO 013 36 PGM 022 11 A
005 00 00 014 01 01 023 43 RCL
006 42 STO 015 51 BST 024 01 01
007 01 01 016 69 OP 025 81 RST
008 36 PGM 017 21 21

This is what the current part of Pgm 01
(standard module) looks like:

098 92 RTN
099 76 LBL
100 11 A
101 98 ADV
102 99 PRT
103 62 PG*
104 00 00
105 11 A
106 99 PRT
107 92 RTN

When the user presses R/S, the module ex-
executes the program that immediately
calls Lbl A into the regular program mem-
ory. There the content of R1 is recalled
and RST is performed to clear the subrou-
tine call register. One problem, however,
is that the user won’t be able to press
R/S key for a long time since this opera-
tion will stop when the queue is resumed
in the normal program.
Please note:
1. If, after Pgm nn BST, you want to

call a subroutine in the normal pro-
gram line, the corresponding routine
in the module will be called. The
same applies to R/S.

2. RTN removes the effect of Pgm nn BST.
3. There are 6 subroutine levels known.

A call of one module program, which
in turn calls the common program mem-
ory, takes up two subroutine levels.
These can only be reset with RST.

4. When returning to the usual program
memory, stops execution if R/S is de-
pressed.

Articles about delayed module calls in Program-

biten:

PB 81-1 p 24-25: Björn Gustavsson, To influence
a program while running without stopping the
program
PB 81-1 p 15: Bjorn Gustavsson, Random numbers
PB 81-4 p 28-31: Anders Persson, Cost for tele-
phone conversation

THE FIRMWARE OF TI-58/59
The TI-58/59 has a firmware (regardless
of the module installed) used to calcu-
late statistical functions and conver-
sions. It can be accessed in the follow-
ing way (for this example, the standard
module must be inserted): press (ignore
flashing, R/S shouldn’t be pressed too
fast) Op 09 Pgm 02 R/S R/S R/S Op 17 GTO
000 Op 17 R/S P/R LRN.

PROGRAMBITEN 7

If you do not have a printer, you can
single with SST to step 487; if you have
a printer, press LRN again, and then List
will print the program. After step 487
happens a jump to step 039; likewise, the
list will be canceled at step 503. To get
to the following sections before use the
formula above, again with "GTO 489" or
"GTO 505".
Steps 000-379 contain programs for sta-
tistical functions and conversions. Steps
380-511 contain the numerical value for
calculating ln x, etc. (see also the sec-
tion on correspondence between program
steps and data registers; the same rules
don’t exactly apply here).

Articles about the firmware in Programbiten:

PB 80-3 p 14-15: Lars Hedlund, Deep diving into
the TI-59
PB 80-4 p 23: Lars Hedlund, Deep Diving into the
TI-59 (2)

GRAPHIC MODE
According to the instruction manual,
shapes (e.g. "plotting" of curves) can
only be written with whole characters.
West German Michael Sperber has realized
that by pressing a key sequence from the
keyboard, you can program an instruction
that interrupts the printout so that only
the first lines of a character is written
without line feed so that the next row
continues directly after the preceding
character. By selecting the appropriate
letters, you can draw figures with about
three times better resolution in both di-
rections.

At step 024-025, the program must have
"SUM Ind 80" and then 6 "Nop" or zero.
From the keyboard you must press, with
the standard module inserted and in par-
tition 9 or 10 Op 17 (4 Op 17 on TI-58),
"GTO 024 CLR Pgm 19 SBR 045 P/R LRN Ins
LRN RST CLR". Flashing must be ignored!
This sequence implies that a special code
is entered at step 024, so that an "Op
05" on, for example, steps 021-022, will
be canceled during execution. Since la-
bels are not available after step 024, it
must be noted that direct addresses with-
in this area are moved one step.

Article about Graphic Modes in Programbiten:

PB 81-2 p 10-13: Lars Hedlund, Graphics Mode and
Plot 60

PRACTICAL BOX

"Op 20" - "Op 39"
Use these instructions instead of the
longer "1 SUM 00" etc.

Automatic program partition
We recommend that programs that are not
written in normal partition are recorded
in normal partition. The required parti-
tion (e.g. 1 Op 17) is then put into the
program at the appropriate place. The use
of the program is thus much simpler. (Do
not use spared magnetic cards!)

Alpha code in data registers
Try to allocate the calculator's parti-
tion so that the print code (preferably
in HIR form) is stored in data registers
whose contents are recorded on magnetic
cards. In this way, the program becomes
faster than if the print codes were to be
created in the program

Exclusion of right parentheses before "="
All right parentheses before = can be ex-
cluded, because = closes all open paren-
theses. Example: RCL 01 x (RCL 02 + RCL
03 =.

ADDENDUM
The programs at the top of the second
column on page 5 in the Complement to the
instruction manual can be shortened by 2
program steps, as the programs below
show. We chose to use the longer variants
in the Complement, because we think they
are somewhat easier to understand.

TI-58/58C TI-59

000 76 LBL 000 76 LBL
001 11 A 001 11 A
002 85 + 002 85 +
003 03 3 003 06 6
004 69 OP 004 69 OP
005 17 17 005 17 17
006 93 . 006 93 .
007 06 6 007 06 6
008 01 1 008 01 1
009 95 = 009 95 =
010 42 STO 010 42 STO
011 29 29 011 59 59
012 02 2 012 05 5
013 69 OP 013 69 OP
014 17 17 014 17 17
015 61 GTO 015 61 GTO
016 02 02 016 04 04
017 46 46 017 86 86

8 PROGRAMBITEN

