# TI-59 FIRMWARE by <br> Palmer O. Hanson, Jr. 

## Introduction

In early 1980 a personal letter from Maurice Swinnen, the editor of TI PPC Notes explained that the Tl-59 firmware could be observed by performing the following unusual keyboard sequence while disregarding the flashing display:

| Step | Display |
| :--- | :--- |
|  |  |
| Turnon | 0 |
| 2nd-Op-09 | Flashing 0. |
| 2nd-Pgm-24 | Flashing 0. |
| R/S | Flashing 0 |
| R/S | Flashing 1 |
| R/S | Flashing 0 |
| 9-2nd-Op-17 | Flashing 239.89 |
| GTO-0 | Flashing 239.89 |
| R/S | Flashing 0.00 |
| 2nd-DMS | Flashing 0 |
| LRN | 00082 |

One may then single step (SST) through the firmware up to location 575. Pressing almost any other key seems to return the calculator to the normal mode. After reaching location 575 an additional SST yields a zero in the display. A second additional SST yields an 04 in the display. A third additional SST yields a "locked-up" mode with the faint [ on the far left. Exit from that condition can only be obtained by turning the calculator off.

Examination of the instructions obtained from the SST sequence will show that the code from locations 512 through 575 repeats the code in locations 384 through 447. Pages 16 through 19 show the listing through location 511 . The listing shows rational program steps to mechanize the statistics and conversions functions in program locations 000 through 379. The apparent "garbage" instructions in the remaining locations have been shown to be the equivalent instructions to constants which would be useful in mechanizing the transcendental functions.

The original discovery of the ability to download the firmware was by Steffen Seitz (see Reference 1). Other calling sequences have been discovered which will also permit viewing of the firmware (see References 7 and 8). The additional calling sequences have not revealed any additional firmware, but have been helpful in understanding the calling techniques.

## Analysis of the Firmware

Most of the statistics and conversions functions include manipulation of the hierarchy registers through the use of the HIR command (code 82). Volume 4 Number 3 of PPX Exchange dated May/June 1980 contains a discussion of most of the HIR options. The HIR20 sequence which appears at locations 045/046 and 082/083 is not discussed in that reference. An analysis of the program sequences indicated that the HIR-20 command must be some kind of GTO-2nd-Ind instruction where the indirect address is somehow established by the entry to the firmware. For example, the HIR-20 command at locations 045/046 must result ins

A RTN when performing $\mathrm{Op}-12$, or
A do-nothing and continue the calculations at location 047 for Op-15, or
A jump to location 058 for Op-14.
I wrote to Maurice Swinnen asking whether he had any further information on the HIR-20 command. His reply was "The HIR-20 in the firmware of the TI-59 is a mystery to everyone. ... They showed me on the emulator how HIR-20 executed THERE as a RTN. But it does not do it in user memory. Other HIR-2X combinations, such as HIR-21 etc., do not work either in the emulator or in TI-59 user memory."

The article on "Hard-wired Functions" on page 7 of the March/April 1981 issue of PPX Exchange (Reference 9) stated "As you will see, this instruction can act as Nop, GTO, or INV-SBR depending upon a condition preset by the algorithm before the sequence is called. The only effect this sequence has in main memory is to kill a live entry state."

Page 14 of Patent 4,153,937 (Reference" 6) describes HIR-20 as a "conditional return program code". Table IV of the patent indicates that the second digit of an HIR-2X command is ignored.

## Angle Conversions DMS and INV-DMS

Locations 303 through 340 of the firmware mechanize the DMS function. Locations 341 through 379 mechanize the INV-DMS function. One would have expected that the mechanizations would include an EE-INV-EE sequence at entry to limit the calculations to the displayed value only as noted on page V-30 of Personal Programming. In the absence of such a sequence it seems that there must be an implicit equivalent built into the DMS command.

## Polar/Rectangular Conversions $P \rightarrow R$ and INV-P $\rightarrow \mathbf{R}$

Locations 284 through 302 mechanize the $P \rightarrow R$ function.
Locations 250 through 283 mechanize the INV-P $\rightarrow$ R function.

## Statistics Data Entry $\boldsymbol{\Sigma}+$ and INV- $\boldsymbol{\Sigma}_{+}$

The $\Sigma_{+}$function starts at location 192. The INV- $\Sigma_{+}$function starts at location 213. Both functions end at location 249.

## Calculation of Mean Values ( $\mathrm{x}_{\mathrm{m}}$ )

The $x_{m}$ function begins at location 067 and ends at the HIR-20 command at locations 082/083.

## Calculation of Standard Deviations (INV $\mathbf{x}_{\mathrm{m}}$ )

The INV $x_{m}$ function begins at location 107 and ends at location 148. The equations are mechanized as indicated on page V-34 of Personal Programming.

## Calculation of Variances (Op-11)

The Op 11 function begins at location 067 and uses the same instructions as those used for the $x_{m}$ function to calculate the mean values; however, at the HIR-20 command at locations 082/083 the Op 11 function continues on to calculate the variances using the equations as indicated on page V-34 of Personal Programming. The Op 11 function ends at location 106.

## Linear Regression

The Op 12 function begins at location 000 and ends at the HIR-20 command at locations $045 / 046$. The solutions for the slope and intercept are mechanized as indicated on page V37 of Personal Programming. The slope is calculated first, and the value of the slope is used in the calculation of the intercept.

The Op 13 function which computes the correlation coefficient begins at location 149 and ends at location 191. The Op 13 function does not mechanize the equation shown on page V-37 of Personal Programming, that is, the solution is not obtained by calculating the values for the slope and for the standard deviations of the $x$ inputs and $y$ inputs and then combining as indicated on page V-37 to obtain the answer. Rather, the algebraic equivalent equation is mechanized.

$$
R=\frac{\left(\Sigma x y-\frac{\Sigma x \cdot \Sigma y}{N}\right)}{\left[\left(\Sigma x^{2}-\frac{(\Sigma x)^{2}}{N}\right)\left(\Sigma y^{2}-\frac{(\Sigma y)^{2}}{N}\right)\right]^{\frac{1}{2}}}
$$

Of course, this will not be the exact computational equivalent due to round-off errors in the calculator. For the problem illustrated on page V-38 of Personal Programming the difference is small, only $2.6 \mathrm{E}-12$.

The Op 14 and Op 15 functions begin at location 000, store the input value in HIR-8, calculate the slope and intercept using the same instructions as those used for the Op 11 function, but branch at the HIR-20 command at locations 045/046. The Op 15 function continues on at location 047 ending at location 057. The Op 14 function continues on from location 058 ending at location 066.

## Identification of the Equivalent Constants

As noted earlier the listing for locations 380 through 511 appear to be "garbage" when considered as instructions. But, with the calculator repartitioned to 319.79 (8-2nd-Op-17) then data registers 56 through 71 , which cover the same portion of the memory as program locations 384 through 511, will print out as follows with an INV-2nd-List

| -572.957951 |
| :---: |
| -31. 4.592654 |
| -157. nr96er |
| -9.99999-71 |
| -9.99996-70 |
| 9.999667 ¢ |
| 9.9686518 |
| 7 asgegit 44 |
| 9.999953 |
| П. 00001 |
| -9,995 28 |
| $9.9950039-2$ |
| 9.99999989 |
| $9,51016-648$ |
| 6.9314718-959 |
| 2.0298509 |

Note: You cannot obtain this printout by adding the sequence LRN-INV-2nd-List to the calling sequence defined on page 1. Rather, you must have entered program steps 384 through 511 using the normal LRN mode.

If you recall the values from data registers 69, 70 and 71 you will find that a flashing display does not result. The question marks by the printouts for those data registers from the INV-2nd-List sequence are due to the flashing display which does come from a recall of the value from data register 68.

Bill Skillman is credited with recognizing that these values are constants which would be useful in mechanizing the transcendental functions (see Reference 3). For example, the contents of memory register 57 is $-\pi \times 10$, of memory register 63 is $\pi / 4 \times 10$, and of memory register 70 is $\operatorname{Ln}(2) \times 10^{-94}$, etc. In Reference 4 John Van Wye suggested that the constants were not scaled at all, but were fixed point notation with an implied decimal point between the two most significant digits. Using John's suggestion we may obtain the constants by reading each set of eight equivalent instructions in reverse order; for example, for the constant in memory location 56 we read the instructions from 511 backward through 504. Following this convention yields the following table of values, with the equivalent function as identified by Bill Skillman.

Memory Location Memory Location Contents Equivalent Function

| 56 | 5.729577951308022 | $18 / \pi$ |
| :--- | :--- | :--- |
| 57 | 3.141592653590012 | $\pi$ |
| 58 | 1.570796326795022 | $\pi / 2$ |
| 59 | 0.000099999999667 | $\arctan (0.0001)$ |
| 60 | 0.000999999666667 | $\arctan (0.001)$ |
| 61 | 0.009999666686670 | $\arctan (0.01)$ |
| 62 | 0.099668652491200 | $\arctan (0.1)$ |
| 63 | 0.785398163397450 | $\pi / 4=\arctan (I)$ |
| 64 | 0.000000999999500 | $\operatorname{Ln}(1.000001)$ |
| 65 | 0.000009999950000 | $\operatorname{Ln}(1.00001)$ |
| 66 | 0.000099995000333 | $\operatorname{Ln}(1.0001)$ |


| Memory Location | Memory Location Contents | Equivalent Function |
| :---: | :--- | :--- |
| 67 | 0.000999500333084 | $\operatorname{Ln}(1.001)$ |
| 68 | 0.009950330853168 | $\operatorname{Ln}(1.01)$ |
| 69 | 0.095310179804325 | $\operatorname{Ln}(1.1)$ |
| 70 | 0.693147180559945 | $\operatorname{Ln}(2)$ |
| 71 | 2.302585092994012 | $\operatorname{Ln}(10)$ |

All values are correct to 13 places. Some are correct to 16 places. Location 68 ceases to look like an overflow. That apparent overflow when recalling the value as a constant with the INV-2nd-List sequence or with a RCL-68 instruction, and the strange signs and scalings for the other values, seem to be associated with the fact that the three least significant digits carry the sign and exponent information for normal storage of constants.

## A Caution on the Use of INV $x_{m}, O p$ 11, and Op 13

The discussion of the Op 13 function observed that algebraic equivalents are not necessarily computational equivalents in the presence of round-off error. Such use of algebraic equivalents can lead to unexpected results, particularly in the use of the INV $x_{m}$, Op 11, and Op 13 functions. For example,. the definition of the standard deviation is the square root of the sum of the squares of the differences between the individual values and the mean value, divided by the number of observations minus one; that is:

$$
\sigma_{y}=\sqrt{\frac{\Sigma(y-\bar{y})^{2}}{(N-1)}}
$$

In the TI-59 mechanization for the standard deviation the algebraic equivalent is used as indicated on page V-34 of Personal Programming.


This algebraic equivalent allows the calculator to obtain an answer without storing each individual data point, but at the risk of obtaining erroneous results if round-off errors become important. This might happen if the mean is large, but the deviations from the mean are small.

For example, enter the following five values using the $\Sigma+$ command: 1.0000067, 1.0000069, $1.0000071,1.0000073$ and 1.0000075 . Then $2 n d-x_{m}$ yields the correct mean of 1.0000071 . but INV-2nd- $x_{m}$ yields a flashing .0000007071 for the standard deviation because round-off has caused the value under the square root sign to be a negative number.

## Other Restrictions on Use of Statistics and Conversions Functions

Page V-30 of Personal Programming contains the following caution:
"There are several mathematical sequences that have been programmed into your calculator. These calculations use up to 4 pending operations and 1 level of the subroutine return register. The pending operation registers used by these functions are the same registers used by the alphanumeric printing operations. Be sure alphanumeric data entered with 2 nd-Op-03 or 2nd-Op-04 is printed before using Conversion or Statistics functions."

The availability of the revealed firmware permits finer tuning of the above restrictions. Examination of the firmware shows the following usage of pending operations, hierarchy registers, and parenthesis for the various functions:

Function Parenthesis Pending Operations t-Register HIR-7 HIR-8

| DMS | 4 | 2 |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :--- |
| INV-DMS | 2 | 2 |  |  |  |
| P $\rightarrow$ R | 1 | 1 | Used | $R$ | $\theta$ |
| INV-P $\rightarrow$ R | 2 | 2 | Used | X | $Y$ |
| $\Sigma+$ | 0 | 0 | Used | Used | $+x_{i}^{*} y_{i}$ |
| INV- $\Sigma_{+}$ | 0 | 0 | Used | Used | $-x_{i}^{*} y_{i}$ |
| $x_{m}$ | 1 | 1 | Used |  |  |
| INV- $x_{m}$ | 2 | 2 | Used |  | $N-1$ |
| Op-11 | 1 | 2 | Used |  |  |
| Op-12 | 2 | 1 | Used |  | Used |
| Op-13 | 1 | 4 |  |  | Used |
| Op -14 | 2 | 1 | Used |  | Used |
| Op-15 | 2 | 1 | Used |  |  |

## A Caution on the Use of INV- $\Sigma_{+}$

The article "Hard-wired Functions" by Don O'Grady in the March/April 1981 issue of PPX Exchange (Reference 9) cautions users against difficulty when using INV- $\Sigma+$ with the data entered using scientific notation. The problem is a result of the +/- command at location 213, the first instruction encountered in the INV- $\Sigma+$ routine. The instruction was intended to change the sign of the entered value. or the sign of the mantissa when in scientific notation. However, if the INV- $\Sigma+$ is used immediately after completion of an entry in scientific notation then the +/- changes the sign of the exponent, not the sign of the mantissa.

The problem occurs only with the "live entry" state which 'results from entry of a number in scientific mode. It does not occur with the "live entry" state established by entering the sequence EE-INV-EE with a dead entry state in the display. When in scientific mode that sequence produces a "live entry" state for the mantissa, not for the exponent.

To observe the problem initialize the calculator for statistics entry with the sequence 2nd-Pgm-01-SBR-CLR. Enter 1-EE-3 and press $2 n d-\Sigma+$. Enter 1 -EE-3 again and press INV-2nd- $\Sigma_{+}$. Recall the sum of the two entries with a RCL-01 and see 1.00000103 in the display, not the zero which was desired.

## Special Applications of the Statistics and Conversions Functions

The statistics and conversions functions can sometimes be used to provide other functions with substantial savings in program steps. For example, in one recent application I needed to recall an angle and calculate and store $\sin \theta, \sin ^{2} \theta, \cos \theta, \cos ^{2} \theta$, and $\sin \theta \cos \theta$. My original routine looked something like this:

| 000 | 76 | LEL | 112 | 43 | ECL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 001 | 11 | A | 013 | 00 | 00 |
| 002 | 43 | RCL | 014 | 39 | Cus |
| प0¢ | $0 \square$ | 00 | 015 | 42 | STD |
| 004 | 38 | SIH | 016 | 04 | 04 |
| 005 | 42 | $97 \square$ | 017 | 49 | FRII |
| 006 | 11 | O1 | 018 | 06 | 06 |
| 007 | 42 | ST0 | 019 | 33 | 8 |
| D0: | 06 | T6 | 020 | 42 | STD |
| 009 | 38 | $\mathrm{V}^{2}$ | 021 | 05 | 05 |
| 010 | 42 | STI | Dee | 92 | ETH |
| 011 | Q2 | 02 |  |  |  |

As written the routine accepts an angle stored in R00 in degrees and places $\sin \theta$ in R01, $\sin ^{2} \theta$ in R02, $\cos \theta$ in R04, $\cos ^{2} \theta$ in R05 and $\sin \theta \cos \theta$ in R06. When I ran into a memory limitation I reprogrammed the routine using the statistics and conversions functions and saved ten program locations. My revised program was:

| 000 | 76 | LE |
| :---: | :---: | :---: |
| 01 | 1 |  |
| 02 | 36 | FG |
| 03 | 11 |  |
| 04 | 71 | E8 |
| 05 | 25 | CL |
| 0 O | 01 |  |
| 007 | 32 |  |
| D08 | 43 | - |
| 09 | 10 |  |
| 10 | 37 | P. |
| 11 | 78 |  |
| 12 | 92 |  |

If I had needed one more program location I could have used the sequence Pgm-15-E' instead of Pgm-01-SBR-CLR since I was using the Master Library module.

## Clearing Memory Using the Statistics Initialization Routine

In the article "Clearing-Your Memory" in the March/April 1981 issue of PPX Exchange Robert Wyer described a method for clearing a limited portion of the memory by using repartitioning.
A more versatile method is available using a portion of the statistics initialization routine. If you use the program sequence XX-Pgm-01-SBR-012 you will clear the memory locations from R01 through RXX. This capability was illustrated on page III-10 of the TI Programmable 59 Workbook. Unfortunately, this routine will not work with all of the modules since TI chose to restructure the 01 program for some of the modules.
The XX-Pgm-01-SBR-012 sequence works with the modules numbered one through seven, that is with the Master, Statistics, Real Estate, Surveying, Navigation, Aviation, Leisure, and Agriculture modules. The sequence XX-Pgm-01-SBR-004 is required with the modules numbered nine through eleven, that is the Business Decisions, Math Utilities, and Electrical Engineering modules. The sequence XX-Pgm-01-SBR-007 is required only with Securities Analysis (\#8) module. There is no statistics initialization capability with the RPN module (\#13) installed. The restructuring of the later modules involved elimination of the diagnostic capability in favor of additional memory for other programs.

## The Circular Stepping Phenomenon

If after completing the keyboard sequence described on page 1 for viewing the firmware you press LRN again you can list the firmware on a PC-100. However, you will find that what would become location 488 in the listing as obtained from the SST readout from the display instead reverts to location 039 when listing on the PC-100. The printout is illustrated in the right hand column on page 19. If you let the printer run long enough the printout will repeat that sequence again and again. In 52 Notes (Reference J) Steve Bepko reported that if the program counter was SST'd past location 488 then additional printer listing could be obtained up through location 503. At what would have become location 504 the circular stepping to location 039 would occur.

Patrick Acosta noted that a code 22 (INV) appeared at locations 488 and 504 (Reference 10). He suggested that the circular listing might result if the codes were really hexadecimal codes (h22). To test that hypothesis I synthesized a code h22 at location 016 of an otherwise clear memory by using the following sequence (again due to Patrick Acosta):

Starting from turn-on, or Cms-CP
GTO-016-LRN-SBR-BST-LRN
10-Op-17-CLR
Pgm-12-SBR-999
R/S
DMS
LRN
Ins
LRN-RST-CLR
GTO-016-LRN
SST
SST
SST
SST
SST
SST
SST
SST
SST
If you check the remainder of the user memory you will find zeroes.
RST-List

Clears memory
Puts code 71 in location 016
0 in the display
Flashing 0 . in the display
Flashing 0.00 in the display
Flashing 0 in the display
01655 in the display
01655 in the display
0 in the display
01622 in the display
01702 in the display
01810 in the display
01938 in the display
02030 in the display
02131 in the display
02239 in the display
02371 in the display
02403 in the display
02500 in the display

You should now get the listing shown on the following page. Note the circular stepping each time what would have become location 016 is encountered. If you want more information on the rules for synthesizing hexadecimal codes see Patrick Acosta's writeup on page 15 of volume 6 number 9/10 of TI PPC Notes.

| กロ0 | 017 | 0 |  |
| :---: | :---: | :---: | :---: |
| 011 | D0 | 0 | Tl-59 Firmware |
| 002 | 010 | 0 | Page 11 of 20 |
| 017 | [10 | 0 |  |
| 0104 | 01 | 0 | Patrick's conjecture that something is different about the code |
| 005 | 010 | 0 | at locations 488 and 504 is supported by the listing in Table VI |
| 015 | 010 | 0 | at locations 488 and 504 is supported by the listing in Table VI |
| 007 | 010 | I | of Patent No. 4,153,937 (Reference 6). The final character for |
| D08 | 0 | 0 | the constants $0,13,14$, and 15 in that table all appear as a |
| 0179 | 0 | - | code $C$. The equivalent locations in the downloaded firmware |
| 010 | D] | 0 | on page 18 and 19 are 384, 488, 496, and 504. |
| 011 | 010 | 0 |  |
| 02 | 01 | T | Locations 384 and 496 in the downloaded firmware list as code |
| 113 | 0 | 1 | B (key-code 12). In the table in the patent the final character |
| 014 | 00 | 0 | pair for the equivalent locations is 0C, or hexadecimal code |
| 015 | 101 | 0 | h12 |
| 100 | 02 | 2 |  |
| 011 | 10 | $E$ |  |
| 012 | 38 | EH | Locations 488 and 504 in the downloaded firmware list as code |
| 008 | 31 | TH | INV (key-code 22). In the table in the patent the final character |
| 014 | 31 | LFU | pair for the equivalent locations is 1 C , or hexadecimal code |
| 005 | 39 | CDS | h22. |
| 01\% | 71 | SEP |  |
| 017 | 0 | 10 | The conclusion that it is the h22 code at locations 488 and 504 |
| 018 | 010 | $\square$ | which cause the circular stepping seems inescapable. |
| 019 | [10 | -1 |  |
| 010 | [10 | 0 |  |
| 011 | [1] | 0 | A method for writing the revealed firmware directly onto |
| 012 | 10 | -1 | magnetic cards has not been found to date. To perform |
| 013 | 010 | 0 | calculations with the revealed firmware it is necessary to key in |
| 114 | 00 | 0 | the proper code in the Normal program assembly mode (LRN). |
| 015 | 0 | 0 | However, even then some of the routines will not run due to the |
| 0 O | $\square 2$ | $z$ | existence of the HIR-20 commands which act as Nop in user |
| 001 | 10 | $E^{\prime}$ | memory. |
| 010 | 38 | SH | memory. |
| 008 | 31 | THH |  |
| 0104 | 31 | LEH | Even if it were possible to record the downloaded firmware on |
| 005 | 39 | CDE | magnetic cards the hexadecimal codes at locations 384, 488, |
| D0: | 71 | SER | 496 , and 504 would not survive the transfer to magnetic cards. |
| 017 | 0 | ग1 | Hexadecimal codes revert to their normal code equivalent |
| गก¢ | 01 | 0 | during transfer to the magnetic cards. |
| 019 | $0]$ | 0 |  |
| 010 | 010 | 0 |  |
| 011 | T1] | 1 |  |
| 012 | 01 | 0 |  |
| 113 | [1] | I |  |
| 014 | 017 | D |  |
| 015 | 010 | IT |  |
| 010 | 12 | 2 |  |
| 1011 | 10 | $E^{\text {E }}$ |  |
| 0 ma | 38 | SH |  |
| 119 | 31 | THH |  |
| 0104 | 31 | LEH |  |
| 005 | 89 | CDS |  |
| etc. |  |  |  |

## The TI-58C Code

Page 9 of the March/April 1981 issue of PPX Exchange states.
"The TI-58/59 code is the same as that for the TI-58C except for steps 000 through 046 (Op12) and steps 250 through 282 (INV$\mathrm{P} \rightarrow \mathrm{R} ; \mathrm{R} \rightarrow \mathrm{P})$..."

Page 20 shows the TI-58C code as listed in PPX Exchange and as verified by Patrick Acosta. The differences do not seem important for normal calculations. However, if the differences are not recognized then unexpected results may occur when exercising "quirks" of the calculators. One example is when creating hexadecimal codes as described in V6N6/7p11 and V6N8p3/4 of TI PPC Notes. Patrick Acosta reported such a problem in a personal letter.
"...We'll have to take note of the ROM version in the future when we create hex-codes at any of the affected steps. For instance, Michael Sperber got a Dsz at step 031 if his graphics mode initialization (v6N4/5p6 of TI PPC Notes) while I got a RTN. I had thought that this was an error by whoever did the listing."

Comparison of the listings for the TI-58/59 firmware and for the TI-58C firmware shows a CE (code 24) for the 58/59 and a CP (code 29) for the 58C at location 031. This difference of 5 in the firmware code corresponds to the difference of 5 in the code resulting from hexadecimal initialization, that is, a Dsz (code 97) for the 58/59 and' a RTN (code 92) for the 58C.

## Other Calling Sequences for Viewing the Firmware

There are many other calling sequences for viewing the firmware. Representative sequences which will work with the Master Library module installed are described in the abstracts for references $1,7,8$, and 12 on pages 13 through 15 . Some of the unusual addresses which were observed led to speculation as to multiple storage for the firmware. However, patent no. 4,153,937 confirms the existence of only 512 unique memory locations.

Calling sequences are also available for other memory modules. One class of such sequences involve the use of unintended code 31 's, a technique similar to that used to find fast mode entry techniques with the other memory modules. With the Leisure Library installed you may download the firmware with the sequence.

## GTO-004-LRN-Pgm-11-SBR-423-RST-RST-RST-LRN-RST-R/S-LRN

You will see 654681 in the display. If you SST you will see the program code for the firmware, but with the addresses elevated by 6546.

## References:

## 1. "Some 58/59 Firmware Revealed", 52 Notes V3N10P4, October 1978

Steffen Seitz reported the original discovery of unusual keyboard sequences to reveal the 58/59 firmware. His sequence was, with the Master Library module installed and turn-on conditions:

> Op9-Pgm-24-R/S-R/S-R/S-99-OP17-GTO-O-R/S-D.MS-LRN

The calculator was then at step 000 of the firmware. Steffen identified the segments of the firmware which mechanized the various statistics and conversions functions, and found that steps 380 through 487 made no sense as instructions. The circular stepping phenomenon was described. The HIR 20 commands at locations 045/046 and at 081/082 were described as RTN commands. Other CROM modules did not provide access to the firmware with the defined sequence.

## 2. "More on the Revealed Firmware", 52 Notes V3N11P1/2, November 1978

Dix Fulton and Gordon Wilk reported on additional experimentation with the revealed firmware. Rules for other calling sequences were defined. Speculation that locations 384 through 487 were thirteen registers which provided addresses and labels for the thirteen programs in the firmware was eventually shown to be incorrect. The revealed firmware failed to explain the rounding which occurs at entry to the D.MS or INV-D.MS routines. The operation of HIR 20 as a RTN, a Nop, or a GTO* depending on the function called was properly defined.

## 3. "Revealed Firmware", 52 Notes V3N12P5/6, December 1978

Steve Bepko, Maurice Swinnen, Dave Leising, and John Mickelson found ROM code past step 487 to step 575 . Steve Bepko found that by SSTing past location 487 to 489 then listing of steps 489 through 503 could be obtained, followed by circular stepping to step 039. Steps 512 through 575 repeated steps 384 through 447 . Bill Skillman identified steps 384 through 511 as non-normalized constants used by the transcendental functions.

## 4. "Revealed ROM Constants", 52 Notes V4N1P6, January 1979

John Van Wye suggested that the constants used for the transcendental functions are not scaled but that the calculator treats the values as fixed point numbers. Some constants are good to sixteen places. All are good to 13 places.
5. "ROM Constants Update", 52 Notes V4N3P4, May 1979

John Van Wye provided further discussion of the ROM constants. He found that nine were good to sixteen places, and that the remaining seven were good to from 13 to 15 places. He noted that the constants for $\ln (10), \pi, \pi / 2$, and $18 / \pi$ ended in 12 or 22 which might be some sort of code.

## References (continued):

6. U.S. Patent 4,153,937 "Microprocessor System Having High Order Capability", May 18, 1979. Assigned to Texas Instruments.

Table VI confirms 'the existence of only 512 unique memory locations in the firmware. Table IV defines the HIR program codes, including HIR 2 X as a conditional return. Lines 64 ff on page 14 provide additional discussion of HIR 20.
7. "TI-59 Firmware", TI PPC Notes V5NIP7, January 1980

GESPRO, a German language newsletter, reported additional work with firmware calling sequences by Walter Ulrich. His sequence

OP9-Pgm-24-R/S-R/S-R/S-OP17-GTO-959-OP17-R/S-P/R-LRN
produces 95955 in the display. If you SST you can advance up through 137400 . If you try to print the program sequence you will find that it is the firmware, but at apparently different program counter steps. The printer stops printing at step 999 and the display reverts to zero.
8. "Firmware Revisited", TI PPC Notes V5N3P6, April 1980

Additional calling sequences are discussed. One from TISOFT, a Belgian newsletter is:
GTO-004-LRN-Pgm-02-SBR-240-RST-RST-RST-LRN-RST-R/S-LRN
results in a display of 6546 81. If you go out of LRN and list using a printer the printing starts at location 546. Again, you will find that the printout is the firmware previously identified, but at still different program counter steps. The editor, Maurice Swinnen, suggested that the firmware code was repeated nine times for a total of 8000 steps, and provided a formula for defining the address which would appear in the display depending on the calling sequence. (Note: This speculation occurred before the existence of U.S. Patent 4,153,937 became known.) The TISOFT sequence appears to make use of the unintended code 31 (LRN) at location 240 of Pgm 02 of the Master Library module. This technique is similar to the use of a similar sequence to provide entry to fast mode--see the article "TI-59 Fast Mode" in the July/August 1981 issue of PPX Exchange.

## 9. "Hard-wired Functions", PPX Exchange V5N2P7, March/April 1981

The article by Don O'Grady was based on a submission by Palmer Hanson. The firmware which mechanizes the statistics and conversions functions is described. The article contains the first reference to the differences between the TI-58/59 firmware, and that for the TI-58C. The article does not discuss the constants used for the transcendental functions or methods to reveal the firmware.

## References (continued)

## 10. Personal Letter from Patrick Acosta, September 16, 1981

Patrick suggested that the circular stepping phenomenon might be associated with hexadecimal h22 codes rather than normal INV (22) codes at locations 488 and 504.

## 11. "Firmware", TI PPC Notes V6N9/10P21, November 1981

Palmer Hanson pointed out that Patent No. 4,153,937 shows that there are only 512 steps of unique code in the firmware, and that table VI of the patent supports Patrick Acosta's idea that there is some hexadecimal code at the end of some of the constants.
12. TISOFT Newsletter, V3N4P7, July/August/September 1981

Yet another method for viewing the firmware is defined. Starting from turn-on:
9-0p-17-STO-00-Pgm-01-A-CLR-DMS-LRN
As with other sequences you ignore the flashing displays. At the end of the sequence you will see 00082 in the display. You can then SST through the firmware, or press LRN again and list the program.

| LOC | CODE | KEY | COMMENTS | LOC | CODE | KEY | COMMENTS |  | OC COD |  | KEY | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000 | 82 | HIE | Stores | व5E | 32 | 2 XiT |  |  | 10 | 05 | 05 |  |
| 0 OL | 08 | O8 | D,splay | OEG | 54 | 4 ) |  |  | 11 | 75 | -: |  |
| 002 | 5 | ¢ | start | $\square \square^{4}$ | 92 | 2 ETH | $\cdots$ |  | 124 | 43 | FCL |  |
| 003 | 5 | ( | -f | 058 | 53 | ¢ |  |  | 13 | 0.4 | 04 |  |
| 004 | 43 | FCL | 0p12, | 059 | 32 | 2 Xit |  |  | 143 | 33 | $x=$ | Find |
| 005 | 06 | 06 | Op 14, | 060 | 65 | \% $\times$ | Op 14 |  | 15 | 55 | $\div$ | $\nabla_{x}$ |
| 006 | 75 | - | - ${ }^{\text {pud }}$ | 061 | 82 | 2 HIF | Finds |  | 164 | 43 | PCL | Pnd |
| 007 | 43 | FCL | -0p15 | 9 ge | 18 | ¢ 18 | - $y_{i} \mathrm{ffor}^{\text {a }}$ |  | 17 | $\underline{5}$ | 05 | store |
| 008 | 04 | 04 | -0p | 063 | 85 | + | anput $x_{i}$ |  | 185 | 54 | ) | ( $N-1$ ) |
| 009 | 65 | \% |  | 064 | 32 | $2 \times 1$ |  |  | 195 | 5 | $\div$ | fur |
| 010 | 43 | RCL |  | 065 | 54 | 4 |  |  | 205 | 53 | \% | use |
| 011 | 01 | 01 |  | 066 | 92 | 2 RTH | 1 |  | 214 | 43 | RCL | in |
| 012 | 5 | $\div$ | inds | 0¢? | 53 | 3 ¢ | start |  | 2 E | 93 | 03 | $\nabla_{y}$ |
| 013 | 43 | RCL | slope. | 068 | 43 | 3 ECL | -for |  | 23 | 5 | - |  |
| 014 | 09 | 09 |  | 069 | 04 | 4 0 4 | $\overline{\bar{z}}$-add $0 p 11$ |  | 24 | 11 | 1 |  |
| 01.5 | 54 | 3 |  | 070 | 55 | , |  |  | 255 | 54 | ) |  |
| 016 | 55 | $\div$ | $v-37$ | OP: | 43 | 3 RCL |  |  | 26 e | 82 | HIE |  |
| 017 | 53 | \% |  | 072 | 03 | 8.03 | -Find |  | 270 | 98 | QS |  |
| 018 | 43 | FOL | Persual | 079 | 54 | ) | $\bar{x}$ |  | 2 E 5 | 94 | ) |  |
| 019 | 0.1 | 05 | Proguamanin | 074 | 8 C | 28 T | -2nd |  | 293 | 34 | 「\% |  |
| 020 | 75 | - | Provioming | 075 | 53 | 3 ¢ |  |  | 303 | 32 | XiT | $\rangle$ |
| 021 | 43 | PCL |  | 076 | 43 | 9 FCL | - |  | 315 | 5 | © |  |
| 022 | 04 | 104 |  | 077 | 01 | 11 |  |  | 325 | 59 | \% |  |
| 023 | 33 | SE |  | 078 | 55 | , |  |  | 3 S | 43 | RCL |  |
| 024 | 55 | $\div$ |  | 079 | 43 | PCL |  |  | 34 | 92 | 02 |  |
| 025 | 43 | PCL |  | 080 | 03 | 09 |  |  | 35 | 75 | - | Find |
| 026 | Q9 | 03 |  | 08t | 54 | 4 | $p$ |  | उद 4 | 43 | FCL | $\nabla_{y}$ |
| 027 | 54 | $)$ |  | Oes | 82 | 2 HIR | Bram |  | 37 | 71 | 01 |  |
| 028 | 54 | , |  | Oes | 20 | Z0 | Bran |  | उE 3 | 33 | X |  |
| 029 | 53 | © |  | 084 | 33 | \% 2 |  |  | 395 | 65 | - |  |
| 090 | 53 | C |  | 085 | 59 | - |  |  | 404 | 43 | RCL |  |
| 0.1 | 24 | CE |  | DEG | 94 | + |  |  | 41 | 73 | 03 |  |
| 082 | 65 | \% |  | 087 | 85 | + | Fints |  | 425 | 54 | ) | - |
| $00^{3}$ | 32 | Xt | Us | Ueg | 43 | ECL | $\nabla_{y}$ |  | 435 | 55 | $\div$ | . |
| 034 | 43 | REL | s\%o | 089 | 02 | 2 O |  |  | 448 | 82 | HIE |  |
| 035 | 04 | 104 |  | 090 | 55 | , |  |  | 451 | 18 | 18 |  |
| 085 | 94 | + 7 |  | 091 | 43 | PCL |  |  | 46 | 54 | ) |  |
| 097 | 85 | $+$ | intevapt | 092 | 93 | 3 O |  |  | 47 | 94 | FX |  |
| 089 | 43 | FCL |  | 098 | 54 | 4 |  |  | 49 | 92 | RTH | $p$ |
| 089 | 1 | 01 |  | 094 | 32 | 2 XT | 1 \} |  | $49=$ | 5 | - | 4 |
| 040 | 54 | ) | V-37 | 095 | 33 | 8 S |  |  | 50 | 5 | C |  |
| 041 | 55 | $\div$ | of | 096 | 53 | \% |  |  | 51 | 43 | FCL |  |
| 042 | 43 | FCL | Persomal | 097 | 94 | $4+3$ |  |  | 520 | 06 | 0 O |  |
| 043 | 03 | 09 | amming | -98 | E | + |  |  | 5 | 75 | - |  |
| 1044 | 54 | , |  | प95 | 43 | 3 CL | Finds |  | 54 | 43 | ECL |  |
| 045 | E2 | HIF | Branch | 100 | 05 | 0 O | $\sigma_{x}^{2}$ |  | 55 | 04 | 04 |  |
| 046 | 20 | 20 | - Branch | 101 | 5 | $\bigcirc$ |  |  | 5 E | 65 | * |  |
| 047 | 53 | - |  | 102 | 43 | E FL |  |  | 57 | 43 | FCL |  |
| 048 | 53 | C |  | 109 | 03 | O3 |  |  | 58 | 01 | 01 |  |
| 049 | 94 | + - | 0 P15 | 104 | 54 | 4 \% |  |  | 595 | 55 | $\div$ |  |
| 050 | 85 | $+$ |  | 105 | 32 | 2 8 : ${ }^{\text {P }}$ |  |  |  |  | FRGEUCUDE |  |
| $00^{1}$ | E2 | HIE | Finds | 106 | 92 | 2 ETH |  |  | ${ }_{6}^{62}$ 的 |  |  | ${ }_{84}{ }^{83} \mathrm{cram} \mathrm{mm}$ |
| 052 | 19 | 18 | $x_{i}$ for | 107 | 59 | ¢ |  |  | ${ }_{64}{ }^{4} \mathrm{~m}$ |  | 74 sum ${ }^{\text {EI }}$ | - 92 NNv $\operatorname{sex}$ |
| 0.53 0.54 | 5 | $\stackrel{+}{\square}$ | enput $y_{i}$ | 109 |  | 3 RCL | Inv $\bar{x}$ |  |  | Xas | SNSTRU | UMENTS |

TITLE $\qquad$
PROGRAMMER $\qquad$ DATE Coding Form

| LOC \|CO | OEI | KEY | COMMENTS | LOC | CODE | KEY | COMMENTS |  | OC\|COD |  | KEY | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -160 | 43 | RCL |  | 215 | 01 | 01 |  |  | 270 | 39 | COS | - |
| 161 | $\square 3$ | 03 |  | 216 | 82 | HIF |  |  | 2718 | 85 | + |  |
| 162 | 54 | 3 |  | 217 | 68 | 08 |  |  | 725 | 53 | C |  |
| 163 | 5 | $\div$ |  | 218 | 33 | \& |  |  | 278 | 82 | HIE | INV |
| 164 | 53 | - |  | 219 | 94 | $+\cdots$ |  |  | 271 | 19 | 18 | $P \rightarrow R$ |
| 165 | 53 | C |  | 220 | 44 | Sun |  |  | 2755 | 55 | $\div$ |  |
| 166 | 43 | RCL |  | 2 Cl | 02 | O2 |  |  | 768 | Q2 | HIF |  |
| 167 | 05 | 05 |  | 2e2 | 32 | \% |  |  | 77 1 | 17 | 17 |  |
| 168 | 75 | - |  | 23 | 22 | Inv |  |  | 7 C 5 | 54 | 17 |  |
| 169 | 43 | ETL |  | 22 | 44 | Sum |  |  | 79 | 22 I | INv |  |
| 170 | 04 | 04 | \% | 225 | 04 | 0.1 |  |  | B0 3 | 30 | TAH |  |
| 171 | 33 | S |  | 226 | 82 | HIF |  |  | E1 5 | 54 | $\%$ |  |
| 172 | 55 | $\div$ |  | 23 | 48 | 48 |  |  | E2 2 | 24 | CE |  |
| 173 | 43 | ECL |  | 228 | 82 | HIE |  |  | 883 | 92 F | RTH |  |
| 174 | 03 | 03 |  | 229 | 07 | -7 |  |  | 845 | 53 | , | - |
| 175 | 54 | y |  | 230 | 39 | SE |  |  | 858 | 82 | HIF |  |
| 176 | 65 | $x$ |  | 231 | 94 | + - |  |  | 86 0 | 08 | 0 B |  |
| 177 | 53 | - |  | 232 | 44 | SUH |  |  | 87 3 | 39 | C0S |  |
| 1.178 | 43 | ECL |  | 233 | 05 | 05 |  |  | 8s 6 | 65 | * |  |
| 179 | 12 | 02 |  | 234 | 01 | 1 |  |  | 893 | 32 \% | X |  |
| 180 | 75 | - |  | 235 | 94 | $+$ |  |  | $9 \square$ | E2 | HIE |  |
| 181 | 43 | ECL |  | 236 | 44 | Sum |  |  | 910 | 07 | 07 |  |
| 182 | 01 | 01 |  | 297 | 09 | 6\% |  |  | 92 | 54 | ) |  |
| 183 | 33 | XE |  | 238 | E2 | HIF |  |  | 93 | 32 x | Xit |  |
| 184 | 55 | $\div$ |  | 299 | 37 | 37 |  |  | 545 | 53 | ¢ |  |
| 185 | 43 P | FCL |  | 240 | 82 | HIF |  |  | 95 | Ez | HIE |  |
| 186 | 03 | 03 |  | 241 | 1 B | 18 |  |  | 961 | 18 | 18 |  |
| 187 | 54 | ) |  | 242 | 44 | sum |  |  | 97 | 38 | SIH |  |
| 188 | 54 | , |  | 243 | 06 | OE |  |  | 986 | 65 | - |  |
| 189 | 34 | F\% |  | 244 | Ez | HIE |  |  | 99 | Q2 | HTE |  |
| 190 | 54 | T |  | 245 | 17 | 17 |  |  | 001 | 17 | 17 |  |
| 191 | 92 | RTH |  | 246 | 32 | XIT | End for |  | 015 | 54 | ) |  |
| 192 | 44 | Sul | stort | 24 | 43 | FCL | $\Sigma \pm$ ond |  | 02 | 92 R | ETH | 1 |
| 193 | 01 | 01 | for | E48 | 09 | 65 | -NV |  | 085 | 53 | C |  |
| 194 | 82 H | HIR | E | 249 | 92 | ETH | -NV $2+$ |  | 045 | 59 | ; |  |
| 195 | 08 | 0 O |  | 250 | 53 | C |  |  | 05 | 5 | ¢ |  |
| 196 | 33 | SE |  | 251 | E2 | HIE |  |  | 068 | E2 H | HIF |  |
| 197 | 44 | Suld |  | 252 | 08 | 08 |  |  | 177 | 0 B | 08 |  |
| 198 | 02 | 02 |  | 253 | 83 | YE |  |  | $\underline{085}$ | 591 | IHT |  |
| 199 | 32 | 8t |  | 254 | 85 | + |  |  | 096 | 65 | x |  |
| 200 | 445 | Sut |  | 255 | 32 | Xt ${ }^{\text {P }}$ |  |  | 10 | 06 | $E$ |  |
| 201 | 04 | 04 |  | 256 | 82 | HIF |  |  | 11 00 | 00 | $\square$ |  |
| 202 | Q2 | HEE |  | 257 | 0 | 07 |  |  | 12 E | 85 | $+$ |  |
| 203 | 48 | 49 |  | 258 | 33 | ¢ ${ }^{2}$ |  |  | 135 | 5 | ¢ | DMS |
| 204 | 82 | HIE: |  | 259 | 54 | ) | INV |  | 14.8 | E 2 H | HIE: |  |
| 205 | 07 | 07 |  | 260 | 34 | F\% | $p \rightarrow R$ |  | 151 | 19 | 18 |  |
| 206 | 33 \% | Y |  | 2 E | 32 | \%t |  |  | 162 | 22 I | IHV |  |
| 207 | 445 | S\\| |  | 26 | 53 | c |  |  | 175 | 59 I | IHT |  |
| 208 | 05 | 0.5 |  | 26 | 58 | 6 |  |  | 186 | 65 | x |  |
| 209 | 01 | 1 |  | 264 | 82 | HIE |  |  | 190 | 01 | 1 |  |
| 210 | 61 | GTO |  | 26.5 | 17 | 17 |  |  |  |  | GEDCOD |  |
| 211 | 02 | 02 |  | 266 | 55 | $\div$ |  |  | ${ }_{63}^{62 m m}$ |  | ${ }^{2}$ 2 STIO, $^{\text {m }}$ | 83 Grog m |
| 212 | 36 | 36 |  |  |  |  |  |  | ${ }_{64}^{63 \mathrm{mag}}$ |  | 73 Rect m | ${ }_{92}^{84 \mathrm{mv} \text { mari }}$ |
| 213 | $94+$ | $+\cdots$ | Stort | E6 | 5 |  |  |  | 64 mmim |  | 74 sum Cl | 92 wvi sarj |
| 214 | 445 | Sum | forluv $\Sigma+1$ | E6 | 2 | IHV |  |  | Texa | XASIN | NSTRU | JMENTS |



TITLE $\qquad$ PAGE 19_of_20 TI Programmable PROGRAMMER DATE $\qquad$ Cocing Form


$\qquad$


