

TI PPC NOTES V5N7 P11-12

BRANCHING FROM THE KEY BOARD DURING PROGRAM EXECUTION.-
Martin Neef, Zepra-club In-West-Germany-discovered-this-very-useful-trick:-Here follows
then a translation of what he writes. I have kept the wording as literal as possible, at the
risk of sounding too Germanic once in a while:
 «It is very well known that the R/S command will normally start and stop a program
in user memory, except when you call a module program from the key board, when the
next R/S command will start the module program, rather than the user program. When
during program execution a call to a module with PGM xx is encountered, according to the
manual, you have to have a SBR call with A through E', or a SBR N or SBR nnn. If you call
anything else, the program goes automatically to PGM 00, that is the program in user
memory.
 One exception to this rule here is the R/S command, which provokes a starting of
the module program, beginning at the step the program pointer happens to be at. These
R/S calls have to be placed in the program immediately after the program call PGM xx.
 By means of a trick it is now possible to avoid that the call to PGM xx would be
cancelled by the subsequent commands. That means that the call to a SBR or R/S does
not have to follow immediately after the PGM xx call. This also means that an R/S from the
key board, during program execution, does not constitute a program interruption anymore
of the user program, but it means the start of a module program.
The trick I am alluding to consists of placing immediately after the PGM xx call one of the
codes 21, 41 or 51, with 51 being preferred for its lack of side effects. (21 is the code for
2nd, 41=SST and 51=BST, ed)
 As long as after this call you have neither a SBR nor a RST, the R/S call from the
keyboard, during program execution, will start the module program.
 A practical application results from this sequence:
 0 STO 00 PGM 01 SBR 098 PGM 01 “51” LBL A (ML module)
After execution of ... PGM 01 “51” ... you may branch to LBL A with a R/S. That means that
you can make decisions without stopping the program, which constitutes a rather "friendly"
style of programming. This trick would allow you to write a comfortable reaction test
program. Note, however, that each call opens up two more SBR levels.
 It is clear that this method has so many new possibilities that it would be rather
difficult to mention them all. I will leave it to the reader to do some further exploration.
Happy searching. (Martin Neef) »
 And this is exactly what Richard Snow did, searching. He writes:
 «The results can be quite frustrating if you don't know what to expect. Please note
the following:

 1. Any subroutine call in user memory (SBR A through E') will call the subroutine in
the library module.
 2. If R/S is held down until the module routine is finished, then the user pro gram will
stop.
 3. A RTN in user memory will cancel the PGM xx “51” call.
 4. A R/S in the user program will not stop the program, but will start the module
program instead.
 As an example, steps 547 through 567 of ML-19 can be used to set a flag. (flags 1,
2, 3, 4, Ed.) A user program can then be made to branch after the R/S key is pressed and
the corresponding flag is checked. The problem, however, is that LBLs A' through D' (on
steps 547 through 567, Ed) are such short routines; that it is difficult not to stop the user
program when R/S is pressed. »
 Richard then encloses an enhanced version of his brother's TIME BOMBS game.
This program appeared originally as PPX # 918029B. The key board branching trick was
added to reduce the possibility of cheating. It should be noted that this program is intended
only as a demonstration of the use of the key board branching trick. Press R/S to stop the
program. Then change your mind about cutting a particular wire and press R/S again to
continue. Unfortunately, if you hold down R/S a little too long, it stops the program for
good. Perhaps a longer routine than LBL D' PGM 19 BST (see steps 028-032 of TIME
BOMBS) can be found in one of the library modules which will do the job more reliably.
 You will find TIME BOMBS somewhere is this issue.

TI PPC NOTES v6NlP15

REPARTITIONING THE TI-58C: By now you have heard of the extra 32 steps (480-
5ll) or four memories in the TI-58C. Unfortunately these steps are usually accessible only
from the keyboard using the STF IND ... sequence. But in the TI-58C, the memory
corresponding to steps 480 to 487 is used by the constant memory feature to set the
partition, the FIX n display mode, and to check for memory loss at turn-on. By changing the
contents of this memory the TI-58C can be repartitioned so that these 32 steps or four
memories are directly accessible.

The first 13 digits of this memory store an unscaled In 10. If this number is not
present at turn-on, the calculator erases all data and program memory to protect the user
from unsuspected memory loss. Instead the user suffers from known memory loss.

The next two digits of the memory (i.e. the first digit of step 480 and the last digit of
step 481) set the partition at turn-on. By writing the proper key-codes in these steps, the TI-
58C can be partitioned like a TI-59 or entirely new partitions may be generated. First, steps
480-481 must be accessed. To do this, write in program memory LBL A FIX 0 R/S, enter
609.000000609 into the display, and press A. Then press STF IND 7 INV LRN. You should
be at step 480. Write |x| RCL in steps 480-481. Then cycle the on-off switch, press Op 16
and you will see a partition of 0.09. This partition means you have no memories and 1200
program steps. Of course there is no hardware beyond step 511- any code you see in
these steps seems to be miscellaneous garbage (electrons that got lost in the circuits,
perhaps). Now you can repartition to any of the primary partitions in Table 1 by simply
going to steps 480-481, entering the proper code and cycling the on-off switch.

However, the most useful partitions are those pseudo-59 partitions in the table. To
access them, get into one of the first four primary partitions then simply repartition from the
keyboard via Op 17 as you would with a TI-59. These give the TI-58C user an extra 32
steps (480-511) or an extra four memories. For instance, a partition of 479.59 gives 480
program steps and four valid (hard-ware-backed) memories numbered 56 to 59. Memory
59 (or steps 480,481) must be used with care since any change in FIX n or partitioning will
alter the contents (but note that the reverse is true only if the on-off switch is cycled) and In
10 must be restored before turn-off or the calculator will be cleared at turn-on. Also, at turn-
off, a psuedo-59 partition will revert to the corresponding primary partition.

The last digit of step 480 stores the FIX n display mode. This digit will equal n+2 in a
FIX n display for 0≤n≤7. In FIX 9 or FIX 8 this digit will be a zero, but in FIX 8 the first digit
of step 480 will be increased by one without affecting the partition. This brings up an

important point. A Partition of 0.39 in FIX 9 and a partition of 0.49 in FIX 8 both store code
20 41 in steps 480 and 481, but the calculator goes into the correct partition and FIX n at
turn-on. How does the calculator determine which partition and FIX n is correct? I was
afraid you'd never ask. Well, in the FIX 8 case the keycode 20 is actually the hexadecimal
keycode 1A. (This was determined through other means. None of the hex keycodes ending
in A do anything new). Putting a 1 in the last digit of step 480 gives a sort of FIX -1 display.
This rounds off the display (but not the display register) to the tens' place and adds a
negative sign. Thus, a 5 is displayed as -10 in the last three places of the display and a 2.3
is displayed as -00. In an exponential display. if the most significant digit (MSD) is less than
5, the display shows 0.00; if the MSD is greater than or equal to 5, the display will show
a.xx where XX is the exponent +1. .

That's about all there is to repartitioning the TI-58C. Doing something useful with all
this is left as an exercise for the reader.

Patrick W. Acosta
(continues on next page)

Code in
Step .. Primary Pseudo-59
480 481 Partition Memories Pgm. Steps Partition***
90 41** 239.89* 90 240 --
80 41 159.99* 100 160 --
70 41 79.09* 110 80 --
60 41 0.19* 120 0 --
50 41 0.09 0 1200 --
40 41 0.19 0 1120 --
30 41 0.29 0 1040 --
20 41 0.39 0 960 959.00
10 41 0.49 0 880 879.09
00 41 0.59 0 800 799.19
90 40 0.69 0 720 719.29
80 40 0.79 0 640 639.39
70 40 0.89 0 560 559.49
60 40 479.00 0 480 479.59
50 40 399.09 10 400 399.69
40 40 319.19 20 320 319.79
30 40 239.29 30 240 239.89
20 40 159.39 40 160 159.99
10 40 79.49 50 80 --
00 40 0.59 60 0 --

**Any keycode from 42 to 49 may be substituted for 41 with identical results.
*These partitions allow pseudo-59 partitions to be accessed. via Op 17.
***Pseudo-59 partitions have the usual number of memories and program steps.

An extra four memories in the TI-58C

This material first appeared in the V6N1P15 TI PPC Notes by Partick Acosta.

It turns out that there are an extra four data memories or an extra 32 program steps in the basic TI-
58C. Note that this only applies to the TI-58C and NOT the TI-58.

The data memory register 59 corresponding to program steps 480 to 487 is used by the TI-58C's

constant memory feature to set the partition between data and program memories, to set the FIX N
display, and to check for memory loss at turn on. By changing the contents of this memory, the TI-
58C can be repartitioned so that these 32 steps/4 memories are directly accessible.

The first 13 digits of this memory 59 store an unscaled LN(10) value. If this number is not present
at turn on, the calculator erases all data and program memory to protect the user from unsuspected
memory loss. Instead, the user suffers from known memory loss!

The next two digits of the memory (the first digit of step 480 and the last digit of step 481) set the
partition at turn on. By writing the proper key codes into these steps, the TI-58C can be partitioned
like a TI-59 or entirely new partitions can be created.

First, however, steps 480-481 must be accessed. To do this, write in program memory: LBL A FIX
0 R/S. Then enter the number 609.000000609 into the display and press A. (Enter this value by
typing 0.000000609 then adding 609 to it. Another example of using the TI-58/59's greater than 10
digit precision). Then press STF IND 7 INV LRN. You should be at step 480. Key in the
instructions GRAD and RCL into steps 480-481 in program mode. Press LRN to leave program
mode. Then cycle the on-off switch. Press OP 16 and you should see a partition of 159.99, meaning
that you have 100 memories and have 160 program steps.

Once this is done, you may repartition the TI-58C for any of the normal TI-59 partitions. For
example, a partition of 6 OP 17 provides the display 479.59 and gives the TI-58C 480 program
steps and 4 hardwired memories available in addressed as STO 56, STO 57, STO 58 and STO 59.

You must be careful with memory 59 (since that will correspond to step 480 and 481 as part of that
memory). Changing the display setting with a FIX command will alter parts of this data memory
and LN(10) must be stored there prior to turning off the machine to avoid a memory lost. For that
reason, I suggest you leave memory 59 alone!

This would allow you to write a very long program and be able to use 3 memories. The program
would otherwise not fit in a TI-58C.

Note: When you turn the machine on and off, any pseudo-TI-59 partitioning scheme will revert
back to a "primary" partition. You would need to redo an OP 17 to re-establish the previous
partitioning when you turn the machine back on.

Other useful TI-59 partitions would include:

• 6 OP 17 - 480 program steps and 3 memories (56, 57, and 58)
• 7 OP 17 - 400 program steps and 13 memories (0-9, 56, 57, 58)
• 8 OP 17 - 320 program steps and 23 memories (0-19, 56, 57, 58)

And so forth.
You don't really gain anything with partitions less than 6 OP 17.
Enjoy this particular quirk.

TI PPC NOTES V6N9/10 P3-4

Fast Mode - Patrick Acosta. Up to now, the only generally known way of getting into
Fast Mode was the PGM 02 SBR 239 method using the ML module. There are two other
ways that work:

1. STF lND 7 INV which works only from the keyboard, and
2. a programmable version using a hex keycode STF IND h12.

 Both of these methods have certain advantages over the CROM method. All three
have in common that they load the calculator's flag register, the CROM method loading the
flag register from the following octet, probably after first altering that octet, and the two
other methods loading the flag register from the display. This flag register (shown as
register 0 in figure 19 of U.S. Patent # 4,153,937) has 16 digits. The digits relevant to fast
mode are used as explained below:

 User flags 9 8 7 6 5
 User flags 4 3 2 1 0
First five digits of d1 d2 d3 d4 d5
flag register

If the digit is.....
0, 4 or 8 Both corresponding flags are reset.
1, 5 or 9 The corresponding bottom flag is set and
 the corresponding top flag is reset.
2 or 6 The corresponding top flag is set and
 the corresponding bottom flag is reset.
3 or 7 Both corresponding flags are set.

The ninth through twelfth digits store the address used in any kind of jump (except RST)
are encoded as follows:

 W X Y Z
 octet byte

Thus, the address above would normally be 8*(WXY)+Z, except when accessing Fast
Mode when the calculator will jump to the address 8*(WXY)+Z+1.
 The thirteenth digit is called the "Program Source Flag". This digit must be 2, 4 or 6
in order to enter Fast Mode.
 Digit sixteen holds the fixed-point display mode. This digit will be zero for an INV FIX
display, otherwise it will be n+2 in a FIX-n display.
 Now to get into the STF IND 7 INV type of Fast Mode, enter a 13-digit number into
the display, with the 9th through the 12th digit encoding the address you want the Fast
Mode to start at, and the 13th digit always equal to 2, 4 or 6. Then press:
DEG FIX 0 RST STF IND 7 (or any other digit) INV (or B, X+T, STO, EE).
 For example, pressing .00007032+44444= DEG FIX 0 RST STF lND 7 INV will clear
all flags and begin execution in Fast Mode at 8*(070) +3+1 = step 564 in an INV FIX
display mode. Or: 2 EE 12 +/- + 3 = RST DEG STF lND 7 INV sets flags 9 and 4 and
begins Fast Mode execution at step 001.

 A few things you should watch out for:
1. You must be in DEG mode to enter Fast Mode. If necessary, you may later in your Fast

Mode program change to RAD or GRAD mode.
2. You may be in FIX 9 mode when entering Fast Mode only if the number in the display

shows no fractional part. otherwise you MUST be in FIX 0.
3. An EE or ENG mode is alright as long as rule 2 is also followed.
4. The above procedure does not automatically reload the "command buffer register". So

you must press RST (unless the calculator has stopped at the 7th step of an octet) to
ensure that this register is loaded immediately with the keycodes you want to execute.
Otherwise, the calculator will execute the instructions in the buffer register until reloaded
at the end of the octet. (continues on next page)

5. You cannot begin execution at step 000.
6. You must have some memory in the current number partition. So, do not use 0 OP 17.
7. Changing the signs of the 13-digit and/or it's exponent will change the FIX n display

mode.
8. Using 9 as the byte within the octet (digit 12 of the flag register) sends the calculator to

step (WXY)*8+8. (Note to members unfamiliar with computer notation: the asterisk is
used to denote "times or multiplication")

 As a practical matter, it is most convenient to store the 13-digit number in an
available register and recall it when needed. Thus, in program memory you could write:
LBL E FIX 0 DEG RCL NN R/S. Then from the keyboard you must press E RST (This last
step could be omitted if the R/S is at a step congruent to 7 modulo 8) STF IND 7 INV.
For those who think this is still too much key punching, put LBL E FIX 0 DEG RCL NN STF
IND in your program such that the IND is at the last step of the partition. Then you will only
need to press E 7 INV. In that case, just put a CE instruction as the first step of your Fast
Mode program, to clear the error condition caused by the aforementioned procedure.
 This method does not erase your program or data or change the partitioning, as the
CROM method does. But most of the usual rules of Fast Mode still apply.
 The hexadecimal method is similar to the keyboard method, with this difference that
it can be programmed. Assuming the 13-digit number is stored in register NN, the
sequence is LBL A FIX 0 DEG RCL NN STF IND h12. Remember that the hex key code

can only be created at the first step of an octet. Since this method also doesn't immediately
load the "command buffer register", only some of the next seven keycodes will be executed
before the buffer is reloaded. How many and which ones are executed depends on the
twelfth digit of the 13-digit number. So, to simplify matters, the instructions in the buffer
register, following h12 are used to make the jump to the beginning of the Fast Mode
sequence. The sequence then is
 LBL A FIX 0 DEG RCL NN STF IND h12 NOP GTO NNIN.
The address now loaded into the flag register is unimportant. You must only be sure that
the GTO NNN is allowed to execute completely, which means that digit 12 must be ≤ 7.
And, of course, digit 13 must be 2, 4 or 6. Note that the step following h12 is always
ignored. Also, any keycode ending in C (2 in display) may be substituted for h12.
 The nice thing about this method is, that you may use library programs or statistics
and conversion functions, then switch to Fast Mode under program control. Another nice
feature, for calculators-alone programs, is that you may call the above LBL A as a
subroutine in your Normal Mode program. Then, when your Fast Mode segment arrives at
the RTN instruction, you return to Normal Mode at the point from which you called
subroutine A. However, with the printer attached, the calculator seems to return in trace
mode. (At least it did for Palmer Hansen in one of the programs in which this was tried.)
Note that the Fast Mode segment must be the lowest level subroutine. You still cannot call
subroutines in Fast Mode.
 For the 58C , the STF h12 works just as well, but Palmer Hansen found STF IND
h12 necessary on his 59. Also notice that, if you single-step past the STF IND h12, none of
the usual methods of stopping Fast Mode will work, except RST.
 You can use sequences such as SBR NNN, SBR LBL, X=T LBL (but not GTO LBL)
in Fast Mode. But this will cause a return to Normal Mode and if you arrive at a RTN
instruction, the calculator begins execution somewhere in the CROM, usually causing a
crash.
 Other methods of causing a jump in the program counter might also be studied for
possible Fast Mode access. For instance, John Mairs' keycode translation in v5n4/5p18.
Also, De Mees' quirk in v6n3p6 might be tried with various keycodes in the first octet. My
58C, besides not entering Fast Mode with PGM 02 SBR 239, doesn't have any of the
CROM quirks either.

TI PPC NOTES V6N9/10 p14-15

Hexadecimal Keycodes: Each program step in a TI-58/59 occupies one byte of memory
and is in a BCD (binary coded decimal) format. This means that each digit (0 to 9) is stored
in four bits. But four bits of memory can contain 16 possible "digits". This is the
hexadecimal (base 16) system where the "digits" 10 to 15-are represented by the letters A
through F respectively. That gives 256 theoretically possible keycodes (00 to FF). It is
possible to create 60 of these hex-keycodes on the 58/59.
 First you must get into ROM. At turn-on (with the ML module in place) press 3 Op 17
(9 Op 17 for the TI-59) Pgm 12 SBR 444 R/S DMS LRN. Then at a step number in ROM
evenly divisible by 8, press Ins and return to RAM by pressing LRN RST. You will find 9
program steps written in user memory (beginning at the step number where you pressed
Ins) the first of which will behave strangely. For instance, at step 000, you would see the
strange keycode 24 which we will denote h24 to distinguish it from the regular keycode for
CE. If previously you had a 01 in RAM step 000, you will get the keycode h25;a 02 in RAM
step 000 will give the normal keycode 20. This suggests...

RULE 1: Pressing Ins at a step number nnn evenly divisible by 8 in ROM ,will give
the hex keycode (A0-ab)+cd in RAM where ab is the keycode in ROM step nnn and cd is
the keycode previously in RAM step nnn but the first digit of the hex keycode will be BCD
normalized. For example, with 01 in RAM step 000, pressing INS at ROM step 000 with
keycode 82 will put A0-82+01=1F in RAM step 000. The hex digit F is 15 in base 10 and
the display will show the hex number 1F as 25 which we will call h25. Note that only the
last digit at a step number divisible by 8 can be made hexadecimal. The first digit and the
other downloaded keycodes are put into normal BCD form. By writing the proper keycode
in RAM and pressing INS the right number of times, any of the 60 possible hex keycodes
can be created at any step number divisible by 8--e.g. to create the hex keycode 2B at step
000, write SBR in RAM, then go to step 000 in ROM and press INS three times: 3x(A0-
82)+71-CB which is BCD normalized to 2B and displayed as 31. Creating the keycodes
you want where you want gets easier with a little practice.

RULE 2: Hex keycodes revert to normal when moved about by editing. Also note
that pressing INS in ROM will move your RAM program up a step so if you want to use
more than one hex keycode in a program, you must start at the bottom of program memory
and work your way up.

RULE 3: All the hex keycodes, except those from h10 to h15, disable any label
search. If you want to jump past a hex-keycode in a program, you must either use absolute
addressing or mask the hex-code from the label search by making it part of a two step
instruction. RCL hxx will allow label searches without crashes or other quirks. Calling a
label that exists before an unmasked hex-code is also alright.
 None of these hex-codes print out calendars (sorry) but some do useful things.
 h04 acts as a super clear. It clears the display, the t register, EE or ENG mode, the
SBR return register, error conditions, all HIR registers (see V5N4/5 p13), resets all flags,
goes to step 000, and stops execution. This could save some steps in an initialization
routine.
 h32, h33, h45, h53, h64, h71, h72, and h83 do the same. (This on a 58C. On a
58/59, h04 may clear the program.)
 h31, h41, and h51 act as a normal sine function. Writing INV before any of them

gives a strange function that is probably used internally to calculate trig functions.
 h54 will copy the t register into the display if immediately following x:t while
preserving pending operations. This is a two step equivalent of copying the display into the
t register (V5N6p4). Doing certain things between the x:t and h54 (including CP, strangely
enough) may produce other results. (continues on next page)
 h24 is the strangest hex-code of all. Create it at step 000 by pressing INS once and
return to user memory and write 7 program steps in 001 to 007 so that you have: 000:

h24, AB, CD, EF, GH, IJ, KL, MN
If you then press RST R/S, h24 will change the order in which the keycodes are
interpreted to:

000: DA, FC, HE, JG, LI, NK, 0L, 00.
This gives the equivalent of 15 program steps packed into 8 steps. SBR 001 will give a 7
step program, and SBR 000 will give an entirely different 8 step program.
All the programmer has to do is write his program so that either way the 8 keycodes are
interpreted will be useful. An IQ of 160 and nerves of steel are recommended.
 The following illustrates the usual behaviour of hex-codes in multi-step instructions.
Recall that h11 is the display of the hex-code 0B which might be written as 00,11 in base
10. This helps explain some of the following behaviour.

RCL h11:: recalls 00, runs SBR A
FIX h11:: goes into FIX 0, runs SBR A.
STF h11:: sets flag 0, runs SBR A.
GTO h11:: runs SBR A, RTNs to step 001.
SBR h11:: runs SBR A, RTNs to SBR 001, RTNs to step following h11.
GTO 0xh11:: SBR A, RTNs to step 10x+1.
SBR 0x h11:: SBR A, RTNs to SBR 10x+1, RTNs to step following h11.
Dsz 01 h11:: if register 01≠0, runs SBR A, RTNs to step 001.
 if register 01=0, runs SBR A, RTNs to step following h11.
EQ h11:: if x=t, runs SBR A, RTNS to step 001.
 if x≠t, runs SBR A, RTNs to step following h11.

 This is the typical kind of behaviour but some multi-step instructions will do completely
different things.
 With 60 hexadecimal keycodes and all the multi-step combinations, I suspect it will take
a while before all the possibilities are understood.

Happy hexadecimal programming,
 Patrick Acosta.

TI PPC NOTES V7N1/2 P11-12

Circular stepping During Listing of the Revealed Firmware - P. Hanson
V5N1p7 and V5N3p6 describe keyboard sequences which permit readout of the firmware
which mechanizes the statistics and conversions functions. Neither discussion mentioned
a quirk which had been reported in earlier discussions of downloading of the firmware
which appeared in V3N10p4 and V3N12p5 of 52 Notes, namely the "circular stepping"
which would occur during an attempt to list the revealed firmware. Patrick Acosta, who
does not have a PC-100, suggested that the quirk might be caused by previously
unrecognized hexadecimal h22 commands at locations 488 and 504 of the downloaded
firmware. My tests confirm Patrick's hypothesis.

The "circular stepping" quirk was originally reported in V3N10p4 of 52 Notes by Steffen
Seitz. He observed that an attempt to continue listing of the firmware past step 487
resulted in a return to step 039 with an abs instruction, the 040, 041, ..., 487 are as before.
This circular stepping will continue for as many iterations as you are willing to expend
printer paper. In V3N12p5 of 52 Notes Steve Bepko reported that if the program counter
was SSTTd past location 488 then additional printer listing could be obtained up through
location 503. At what would have become step 504 the circular stepping to location 039
occurred. In a personal letter Patrick Acosta suggested that the unusual "circular stepping"
behaviour might be associated with the code 22 which is seen at 488 and 504 when
SSTing rather than listing. He hypothesized that the code at those locations might really be
hexadecimal code h22 rather than the normal code 22 (INV). To test the hypothesis I
synthesized code h22 at location 016 of an otherwise clear memory with the following
sequence (again due to Patrick):

Starting from turn on, or Cms-CP Clears memory
GTO-016-LRN-SBR-BST-LRN Puts code 71 in location 016 and returns pointer
 to 016.
10-Op-17-CLR Sets partitioning to permit synthesizing
 hexadecimal codes.
Pgm-12-SBR-999 Flashing 0. in the display
R/S Flashing 0. 00 in the display
DMS Flashing 0 in the display
LRN 016 55 in the display

Ins 016 55 in the display
LRN-RST-CLR 0 in the display. Calculator returned to normal
 mode.
GTO-016-LRN 016 22 in the display confirming that h22 is at
 location 016 .
SST 017 02 in the display
SST 018 10 in the display
SST 019 38 in the display
SST 020 30 in the display
SST 021 31 in the display
SST 022 30 in the display
SST 023 71 in the display
SST 024 03 in the display
SST 025 00 in the display
If you check the remainder of
the user memory you will find
zeroes
RST-List See listing(continues on next page)

Note that "circular stepping" occurs each time location 016 is encountered. Also for this set
of conditions the code that had been verified to be at locations 017 through 022 by the
SST process appears at locations 000 through 006 with the listing process. The conclusion
that h22 code causes circular stepping during listing appears inescapable.

Patrick's conjecture that something is different about the code at locations 488 and 504 is
supported by the listing in Table VI of Patent No. 4,153,937. The final character for the
constants 0, 13, 14, and 15 all appear as a code C (hexadecimal 12) in that table. The
equivalent locations in the downloaded firmware are 384, 488, 496, and 504. Locations
384 and 496 list as code B (keycode 12). In the table in the patent the final character pair
for the equivalent locations is 0C. I suspect that the code is really h12, not code B
(keycode 12). Locations 488 and 504 in the firmware as downloaded by successive SST
commands and readout from the display appear as code INV (keycode 22). In the table in
the patent the final character pair for the equivalent locations is 1C, or h22 as Patrick
Acosta defines hexadecimal codes.

TI PPC NOTES V7N1/2 P23-26

Transparent Fast Mode - Palmer O. Hanson,Jr.
Ever since I became aware of Patrick Acosta's hexadecimal h12 method for entering fast
mode under program control I have been searching for a program sequence which would
make the use of fast mode "transparent" to the user. That is, once the h12 command has
been properly placed with one of Patrick's techniques, then normal mode can be used for
program entry from the keyboard, the calculator will automatically enter fast mode under
program control, and the calculator will automatically be returned to normal mode at the
end of the program sequence.

This automatic return to normal mode has not been available with earlier programs using
the h12 technique, particularly if the printer is used (V6N8p4 of TI PPC Notes). This
limitation was the reason that the fast mode instructions for Patrick's 1 minute 23 second
calendar printer, my 12 digit modulo 210 speedy factor finder, and my 13 digit modulo 30
speedy factor finder all called for the use of a RST from the keyboard to return the
calculator to normal mode after completion of fast mode calculations.

Implementation of automatic return to normal mode requires two additional program steps.
An R/S command (code 91) must be placed at location 000. The fast mode program
sequence must be terminated with a RST command (code 81). However, for the RST
command to be recognized during fast mode it must be immediately preceded by CLR,
2nd CLR, Pause, Print, the sequence EE-INV-EE or one of the number keys. This is the
same rule that applied for an R/S to be recognized during fast mode (item 6 on
V6N9/10p19 of TI PPC Notes). A fast mode demonstration program was written which not
only includes the transparent method of fast mode operation, but also illustrates other h12
fast mode concepts. The instructions for the demonstration program are:

 1. Enter the program. An R/S is required at location 000. The remaining instructions
are entered from locations 055 through 099. The Stflg 12 sequence at locations 071/072
can be entered by the key sequence 2nd-Stflg-B. The demonstration program is similar to
Martin Neef's original counting program (V6N6p4 of TI PPC Notes) but with the ability to
operate in either normal mode-or in fast mode.

 2. Press A to demonstrate normal mode. After about 36 seconds see a 3. in the
display. Since the value of pi was called at location 097, the display of a 3. shows that the
calculator is in Fix 0 mode as set by the commands at locations 069/070. In normal mode
the calculator runs by the Stflg-12-Rad-CLR sequence at locations 071 through 074, sets
flag 2 in the process, and Jumps to location 082 when the B command at location 075 1s
encountered. you need not worry about filling up the subroutine return register by the use
of B rather than GTO-B (see V6N6/7p30 of TI PPC Notes for a discussion of that problem)
since the subroutine-register will be cleared by the RST at location 099. The STO-16-R/S
sequence at locations 076 through 078 is not used in normal mode, but is required to
obtain the desired commands after the fast mode initialization process. The pair of Nop
instructions at locations 087/088 is required to permit use of the same absolute address for
both normal and fast mode for the INV-EQ-089 test at locations 093 through 096.

(continues on next page)
 3. Initialize for fast mode by synthesizing an h12 command at location 072. The
initialisation also changes other commands.
 a. Press INV-Fix and see pi in the display.
 b. Press 10-Op-17 and see 159.99 in the display. This sets the partitioning required
by the initialization process.
 c. Press CLR-STO-00-GTO-072. See a zero in the display.
This locates the program pointer for the initialization and clears data register R00.
 d. Press Pgm-12-SBR-999 and see a flashing 0. in the display. Do not clear the
flashing display at this step or at either of the two following steps.
 e. Press R/S and see a flashing 0. 00 in the display. If R00 had not been cleared in
step 3.c above there would have been a 100 in R00 left over from the normal mode
demonstration. In that case there would have been a 1. 02 in the display at this point and
the synthesis of hexadecimal code would not occur. More generally, if R00 contains
anything other than a zero at the start of the Pgm-12-SBR-999 sequence then the
synthesis of hexadecimal code will not work as planned.
 f. Press DMS. See a flashing 0 in the display.
 g. Press LRN. See 072 03 in the display.
 h. Press Ins. See 072 03 in the display.
 i. Press Ins a second time. See 072 03 in the display.
 j. Press LRN-RST-CLR and see a zero in the display.
 k. If a printer is attached press GTO-072-List. The listing will show altered instructions
at locations 073 through 079, two inserted instructions at locations 080 and 081, and the
instructions which had been in locations 080 through 099 pushed down two steps to
locations 082 through 101. Without a printer press GTO-072-LRN and SST through the
program to verify the changes due to initialization. The command at location 072 seems to
be unaltered. Either a program listing or a readout in LRN mode shows a 12 both before
and after the initialization process. Location 072 was selected for the synthesizing of the
h12 command to demonstrate this curious phenomena. The code in ROM as indicated by
step 3.g is 03. The double insert sequence at steps 3.h and 3.i causes a two time
hexadecimal subtraction of 03 from the 12 in RAM yielding a residual hexadecimal code of
00 at location 072 or RAM. 00 lists and displays as 12, but provides the h12 command (to
use Patrick Acosta's notation) which permits fast mode entry.
 l. Press A to demonstrate operation in fast mode. After about 22 seconds see a 3. in
the display. Again, the 3. indicates that the calculator is in Fix 0 mode.
m. Press GTO-065-LRN-Nop-LRN. The +/- instruction at location 065 has been changed
to a Nop. This will change the sign of the initialization constant which must be in the
display when the Stflg-h12 sequence is encountered. Press A to demonstrate fast mode
with a positive initialization constant. After about 22 seconds see pi in the display. This
demonstrates that certain initialization constants will cause the fix mode to change at fast
mode entry, in this case to Fix 9. (continues on next page)
 n. Press GTO-069-LRN-NOP-Nop-Lrn. The Fix 0 instruction which had been at
locations 069/070 have been changed to Nop instructions. Press A to demonstrate fast
mode without a controlled Fix 0 mode prior to fast mode entry. After about 22 seconds pi
will appear in the display. This demonstrates that the Fix 9 mode is permissible at fast
mode entry if the initialization constant in the display contains no fractional part--see
V6N8p3 of TI PPC Notes.

 o. Press Fix 2. Then press A. After-about 38 seconds see 3.14 in the display. This
illustrates that fast mode entry with the Stflg-h12 sequence cannot be obtained if the fix
mode is other than 0 or 9. To avoid potential problems with leftover fix modes it is
advisable to include control of the fix mode prior to the fast mode entry sequence.
 p. Press 8 to demonstrate normal mode. After about 36 seconds see 3.14 in the
display. The display is still controlled by the Fix 2 mode.
 q. Press INV-Fix to return to Fix 9 mode. press GTO-100-LRN-Nop-LRN. This
changes the Pause instruction which preceded the RST instruction to a NOP instruction.
Press A and watch the flashing [at the left edge of the display closely. After about 22
seconds the variations in intensity of the flashing [will stop, and a dim steady [will appear
at the left edge of the display. You will be unable to clear this state without turning the
calculator off. This demonstrates the necessity that RST be preceded by certain
instructions if it is to be recognized during fast mode.

In a subsequent article I will explain the easy way to control the changed instructions in the
seven program locations immediately following the 0 modulo 8 locations which must be
used for hexadecimal code synthesis. In the meantime, happy hexadecimal programming.

 See listings on next page, please.

TI PPC NOTES v7n7/8p18/19

Creating Hex Keycodes - Patrick Acosta. There are several minor irritations in
creating hex-codes via the ROM method. For instance,
 (1) Hex-codes can only be created up to step 312.
 (2) Different methods of getting into ROM must be used depending on which CROM
is installed.
 (3) It is not a trivial exercise to determine which keycode to write in RAM and how
many times to press Ins to create the hex-code you want.
 These problems are alleviated somewhat by a way of implanting hex-codes which
doesn't even require you to leave the comfort of user RAM. The general method is to jump
to. the first step of an octet without reloading the command buffer register. Then, assuming
the command buffer register and the RAM octet contain the proper keycodes, one Ins will
give the desired hex-code.
 For example, to create the hex-code h12 (= 0C hexadecimal) at step 400, write the
following program in an otherwise cleared memory:
 000: Lbl B 5 0 9 EE 1 1 +/- + 4 = Deg Fix 0 Nop R/S +/-.
Then from the keyboard press B. This puts the number 4.000000005090 into the display
register. Then press STF Ind 7 INV. This loads the above number into the flag register.
Since the thirteenth digit is zero, the calculator stays in user memory. The tenth and
eleventh digits send the calculator to the fiftieth octet, and the twelfth digit (which holds the
byte within the octet), being a 9, sends the calculator to the first step of the octet but
without re-loading the command buffer register. Thus, when you press LRN, you will see
the keycode 94 at step 400. This keycode is left in the command buffer register from step
017. Now the situation is similar to that when creating hex-codes while in ROM in that the
keycode seen in LRN mode is not the keycode actually in that location in RAM. Now, while
in LRN mode, press Ins and h12 appears at step 400 (according to the generalized rule:
hex-code = A0 minus the keycode apparently at step 400 plus the keycode actually at step
400 using hexadecimal arithmetic for the ones digits and decimal arithmetic for the tens
digits, In this example, A0-94+00=0C.) Before running any program, get out of LRN mode
and press CLR. Otherwise, the first keycode the calculator encounters will not be
executed.
 Any other hex-code can be created at step 400 by changing the keycode following
the R/S of routine B and the hex-code can be put at any step divisible by eight up to step

872 (392 on the TI-58) by changing the ninth through eleventh digits of the number
generated by routine B. Just be sure the R/S does not fall on the last step of an octet. That
would leave the command buffer register empty which is no help at all.
 This "RAM method" of creating hex-codes enables you to put hex-codes up to step
872 and in fewer keystrokes than the ROM method. Also, since this method is CROM
independent, the instructions for hex-initializing a program are always the same no matter
which CROM is installed. The only restrictions on partitioning are that the step you want
the hex-code at must be in the partition and a 0 Op 17 partition can not be used since STF
Ind 7 INV gives an error condition in that case.
 The following program is one that I've found useful for a quick look at any desired
hex-code. It uses the RAM method and dynamic code generation to implant the hex-code
at step 176. The instructions are simple.
 (1) Enter the hex-code into the display using the hnn notation.
The tens digit can be anything. The ones digit can be 0 through 5, corresponding to the
hex digits A through F respectively.
 (2) Press A. After two seconds, 4. will appear in the display.
 (3) Press STF IND 7 INV LRN. You'll be at step 176.
 (4) Press Ins and the hex-code appears immediately.
 (5) Get out of LRN mode and press CLR before experimenting.

HEX-KEY CODE CREATOR- P. W. ACOSTA

000 76 LBL
001 11 A
002 94 +/-
003 85 +
004 01 1
005 00 0
006 69 OP
007 17 17
008 09 9
009 02 2
010 00 0
011 06 6
012 93 .
013 09 9
014 01 1
015 00 0

016 07 7
017 04 4
018 03 3
019 95 =
020 42 STO
021 99 99
022 02 2
023 02 2
024 09 9
025 52 EE
026 01 1
027 01 1
028 94 +/-
029 85 +
030 04 4
031 95 =

032 42 STO
033 07 07
034 25 CLR
035 42 STO
036 97 97
037 09 9
038 69 OP
039 17 17
040 60 DEG
041 58 FIX
042 00 0
043 61 GTO
044 01 01
045 63 63

